--- license: apache-2.0 datasets: - digitalpipelines/wizard_vicuna_70k_uncensored --- # Overview Fine-tuned [OpenLLaMA-7B](https://huggingface.co/openlm-research/open_llama_7b) with an uncensored/unfiltered Wizard-Vicuna conversation dataset [digitalpipelines/wizard_vicuna_70k_uncensored](https://huggingface.co/datasets/digitalpipelines/wizard_vicuna_70k_uncensored). Used QLoRA for fine-tuning using the process outlined in https://georgesung.github.io/ai/qlora-ift/ - GPTQ quantized model can be found at [digitalpipelines/llama2_7b_chat_uncensored-GPTQ](https://huggingface.co/digitalpipelines/llama2_7b_chat_uncensored-GPTQ) - GGML 2, 3, 4, 5, 6 and 8-bit quanitized models for CPU+GPU inference of [digitalpipelines/llama2_7b_chat_uncensored-GGML](https://huggingface.co/digitalpipelines/llama2_7b_chat_uncensored-GGML) # Prompt style The model was trained with the following prompt style: ``` ### HUMAN: Hello ### RESPONSE: Hi, how are you? ### HUMAN: I'm fine. ### RESPONSE: How can I help you? ... ```