dimanoid12331 commited on
Commit
ad4a924
·
verified ·
1 Parent(s): f9c91de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -1
README.md CHANGED
@@ -12,4 +12,57 @@ base_model:
12
  pipeline_tag: token-classification
13
  ---
14
  Ii is [DistilBERT-NER](https://huggingface.co/dslim/distilbert-NER) model with the classifier replaced to increase the number of classes from 9 to 11. Two additional classes is I-MOU and B-MOU what stands for mountine.
15
- New classifier inherited
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  pipeline_tag: token-classification
13
  ---
14
  Ii is [DistilBERT-NER](https://huggingface.co/dslim/distilbert-NER) model with the classifier replaced to increase the number of classes from 9 to 11. Two additional classes is I-MOU and B-MOU what stands for mountine.
15
+ Inital new classifier inherited all weights and biases from original and add new beurons wirh weights initialized wirh xavier_uniform_
16
+
17
+ #### How to use
18
+
19
+ This model can be utilized with the Transformers *pipeline* for NER, similar to the BERT models.
20
+
21
+ ```python
22
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
23
+ from transformers import pipeline
24
+ tokenizer = AutoTokenizer.from_pretrained("dimanoid12331/distilbert-NER_finetuned_on_mountines")
25
+ model = AutoModelForTokenClassification.from_pretrained("dimanoid12331/distilbert-NER_finetuned_on_mountines")
26
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
27
+ example = "My name is Wolfgang and I live in Berlin"
28
+ ner_results = nlp(example)
29
+ print(ner_results)
30
+ ```
31
+
32
+
33
+
34
+ ## Training data
35
+
36
+ This model was fine-tuned on English castom arteficial dataset.
37
+
38
+ The t.
39
+
40
+ As in the dataset, each token will be classified as one of the following classes:
41
+
42
+ Abbreviation|Description
43
+ -|-
44
+ O|Outside of a named entity
45
+ B-MISC |Beginning of a miscellaneous entity right after another miscellaneous entity
46
+ I-MISC | Miscellaneous entity
47
+ B-PER |Beginning of a person’s name right after another person’s name
48
+ I-PER |Person’s name
49
+ B-ORG |Beginning of an organization right after another organization
50
+ I-ORG |organization
51
+ B-LOC |Beginning of a location right after another location
52
+ I-LOC |Location
53
+ B-MOU |Beginning of a Mountain right after another Mountain
54
+ I-MOU |Mountain
55
+
56
+ - |Sentences |Tokens
57
+ -|-|-
58
+ Dataset |216 |2783
59
+
60
+
61
+ ## Eval results
62
+ | Metric | Score |
63
+ |------------|-------|
64
+ | Loss | 0.2035|
65
+ | Precision | 0.8536|
66
+ | Recall | 0.7906|
67
+ | F1 | 0.7117|
68
+ | Accuracy | 0.7906|