--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: 2db455ba-c61d-4cbc-8b93-680e1bb1d782 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9b2a54df23989bf2_train_data.json ds_type: json format: custom path: /workspace/input_data/9b2a54df23989bf2_train_data.json type: field_input: '' field_instruction: prompt field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 3 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik1987/2db455ba-c61d-4cbc-8b93-680e1bb1d782 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 25 micro_batch_size: 4 mlflow_experiment_name: /tmp/9b2a54df23989bf2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 4056 strict: false tf32: false tokenizer_type: AutoTokenizer torch_dtype: bfloat16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2db455ba-c61d-4cbc-8b93-680e1bb1d782 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2db455ba-c61d-4cbc-8b93-680e1bb1d782 warmup_ratio: 0.05 weight_decay: 0.01 xformers_attention: null ```

# 2db455ba-c61d-4cbc-8b93-680e1bb1d782 This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - training_steps: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.6922 | 0.0023 | 1 | 7.6402 | | 4.3299 | 0.0070 | 3 | 1.0074 | | 0.4434 | 0.0141 | 6 | 0.5614 | | 0.8488 | 0.0211 | 9 | 0.4613 | | 0.4039 | 0.0281 | 12 | 0.3852 | | 0.3634 | 0.0352 | 15 | 0.3480 | | 0.2057 | 0.0422 | 18 | 0.3067 | | 0.2596 | 0.0492 | 21 | 0.3219 | | 0.362 | 0.0563 | 24 | 0.3179 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1