--- library_name: peft base_model: NousResearch/Yarn-Llama-2-13b-64k tags: - axolotl - generated_from_trainer model-index: - name: 8df67e46-c827-4414-a69b-f3a3598e33c3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-13b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 70827c72e7e20cba_train_data.json ds_type: json format: custom path: /workspace/input_data/70827c72e7e20cba_train_data.json type: field_input: '' field_instruction: question field_output: answer format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik1987/8df67e46-c827-4414-a69b-f3a3598e33c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 2 mlflow_experiment_name: /tmp/70827c72e7e20cba_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2028 strict: false tf32: false tokenizer_type: AutoTokenizer torch_dtype: bfloat16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8df67e46-c827-4414-a69b-f3a3598e33c3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8df67e46-c827-4414-a69b-f3a3598e33c3 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 8df67e46-c827-4414-a69b-f3a3598e33c3 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-13b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-13b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 20.7654 | 0.0008 | 1 | 4.9974 | | 18.0608 | 0.0042 | 5 | 4.3991 | | 5.6643 | 0.0084 | 10 | 0.8882 | | 0.8245 | 0.0126 | 15 | 0.1505 | | 0.0053 | 0.0168 | 20 | 0.1627 | | 0.0024 | 0.0211 | 25 | 0.1644 | | 1.8089 | 0.0253 | 30 | 0.1860 | | 0.3383 | 0.0295 | 35 | 0.1672 | | 0.0192 | 0.0337 | 40 | 0.1700 | | 0.8968 | 0.0379 | 45 | 0.1611 | | 0.337 | 0.0421 | 50 | 0.1546 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1