--- library_name: peft license: llama2 base_model: lmsys/vicuna-13b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: d77e41ee-8587-4461-bf28-27d3384386a6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-13b-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 6eb437370a95d49d_train_data.json ds_type: json format: custom path: /workspace/input_data/6eb437370a95d49d_train_data.json type: field_input: text_description field_instruction: text field_output: transcription_normalised format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device: cuda early_stopping_patience: 1 eval_max_new_tokens: 128 eval_steps: 5 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dimasik87/d77e41ee-8587-4461-bf28-27d3384386a6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 79GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/6eb437370a95d49d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 10 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: de4fc4dd-f8b2-4ce4-a7a9-3c03689c40c7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: de4fc4dd-f8b2-4ce4-a7a9-3c03689c40c7 warmup_steps: 5 weight_decay: 0.001 xformers_attention: true ```

# d77e41ee-8587-4461-bf28-27d3384386a6 This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0043 | 1 | 2.5477 | | 1.9139 | 0.0216 | 5 | 2.4193 | | 1.844 | 0.0431 | 10 | 1.6682 | | 1.3868 | 0.0647 | 15 | 1.4008 | | 1.2746 | 0.0863 | 20 | 1.2748 | | 1.2117 | 0.1079 | 25 | 1.2315 | | 1.2514 | 0.1294 | 30 | 1.2256 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1