dimasik87 commited on
Commit
cfa17d1
·
verified ·
1 Parent(s): ff4fac9

End of training

Browse files
Files changed (2) hide show
  1. README.md +156 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Korabbit/llama-2-ko-7b
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: d7b987e2-230b-46d0-96af-7355b4346ac2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: Korabbit/llama-2-ko-7b
22
+ bf16: auto
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 02696d05973922d6_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/02696d05973922d6_train_data.json
31
+ type:
32
+ field_instruction: review
33
+ field_output: review_tokenize
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 128
42
+ eval_steps: 25
43
+ eval_table_size: null
44
+ flash_attention: false
45
+ fp16: null
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 16
49
+ gradient_checkpointing: true
50
+ gradient_clipping: 1.0
51
+ group_by_length: true
52
+ hub_model_id: dimasik87/d7b987e2-230b-46d0-96af-7355b4346ac2
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0001
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 64
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 32
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_memory:
69
+ 0: 74GiB
70
+ max_steps: 75
71
+ micro_batch_size: 2
72
+ mlflow_experiment_name: /tmp/02696d05973922d6_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_epochs: 3
75
+ optimizer: adamw_torch
76
+ output_dir: miner_id_24
77
+ pad_to_sequence_len: true
78
+ resume_from_checkpoint: null
79
+ s2_attention: null
80
+ sample_packing: false
81
+ save_steps: 25
82
+ save_strategy: steps
83
+ sequence_len: 2048
84
+ special_tokens:
85
+ pad_token: </s>
86
+ strict: false
87
+ tf32: true
88
+ tokenizer_type: AutoTokenizer
89
+ train_on_inputs: false
90
+ trust_remote_code: true
91
+ val_set_size: 0.05
92
+ wandb_entity: null
93
+ wandb_mode: online
94
+ wandb_name: d7b987e2-230b-46d0-96af-7355b4346ac2
95
+ wandb_project: Gradients-On-Demand
96
+ wandb_run: your_name
97
+ wandb_runid: d7b987e2-230b-46d0-96af-7355b4346ac2
98
+ warmup_ratio: 0.05
99
+ weight_decay: 0.01
100
+ xformers_attention: true
101
+
102
+ ```
103
+
104
+ </details><br>
105
+
106
+ # d7b987e2-230b-46d0-96af-7355b4346ac2
107
+
108
+ This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
109
+ It achieves the following results on the evaluation set:
110
+ - Loss: 0.0403
111
+
112
+ ## Model description
113
+
114
+ More information needed
115
+
116
+ ## Intended uses & limitations
117
+
118
+ More information needed
119
+
120
+ ## Training and evaluation data
121
+
122
+ More information needed
123
+
124
+ ## Training procedure
125
+
126
+ ### Training hyperparameters
127
+
128
+ The following hyperparameters were used during training:
129
+ - learning_rate: 0.0001
130
+ - train_batch_size: 2
131
+ - eval_batch_size: 2
132
+ - seed: 42
133
+ - gradient_accumulation_steps: 16
134
+ - total_train_batch_size: 32
135
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 3
138
+ - training_steps: 75
139
+
140
+ ### Training results
141
+
142
+ | Training Loss | Epoch | Step | Validation Loss |
143
+ |:-------------:|:------:|:----:|:---------------:|
144
+ | 0.3356 | 0.0064 | 1 | 1.0513 |
145
+ | 0.0357 | 0.1594 | 25 | 0.0719 |
146
+ | 0.0345 | 0.3187 | 50 | 0.0445 |
147
+ | 0.0735 | 0.4781 | 75 | 0.0403 |
148
+
149
+
150
+ ### Framework versions
151
+
152
+ - PEFT 0.13.2
153
+ - Transformers 4.46.0
154
+ - Pytorch 2.5.0+cu124
155
+ - Datasets 3.0.1
156
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5973f949110c7cf19b3cc9282cbc161d00f20a267a105babdcc0c6e9b763c7a2
3
+ size 319977674