diogopaes10
commited on
Commit
•
fba0c2b
1
Parent(s):
8d66d60
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/MiniLM-L12-H384-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 017-microsoft-MiniLM-finetuned-yahoo-800_200
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 017-microsoft-MiniLM-finetuned-yahoo-800_200
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.4048
|
24 |
+
- F1: 0.6237
|
25 |
+
- Accuracy: 0.63
|
26 |
+
- Precision: 0.6273
|
27 |
+
- Recall: 0.63
|
28 |
+
- System Ram Used: 3.8778
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 0.3903
|
31 |
+
- Gpu Ram Cached: 12.8340
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 32
|
34 |
+
- Disk Space Used: 25.4337
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 25
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 2.3021 | 1.28 | 32 | 2.2975 | 0.0519 | 0.12 | 0.1102 | 0.12 | 3.8424 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 29 | 24.5606 | 78.1898 |
|
67 |
+
| 2.2615 | 2.56 | 64 | 2.1926 | 0.2339 | 0.31 | 0.4649 | 0.31 | 3.8514 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5606 | 78.1898 |
|
68 |
+
| 2.0677 | 3.84 | 96 | 1.9658 | 0.4301 | 0.51 | 0.3950 | 0.51 | 3.8537 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 22 | 24.5606 | 78.1898 |
|
69 |
+
| 1.8562 | 5.12 | 128 | 1.8383 | 0.4655 | 0.545 | 0.4587 | 0.545 | 3.8574 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 41 | 24.5606 | 78.1898 |
|
70 |
+
| 1.6929 | 6.4 | 160 | 1.7403 | 0.4942 | 0.555 | 0.5261 | 0.555 | 3.8549 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 29 | 24.5607 | 78.1898 |
|
71 |
+
| 1.5569 | 7.68 | 192 | 1.6663 | 0.5467 | 0.585 | 0.6496 | 0.585 | 3.8549 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 37 | 24.5607 | 78.1898 |
|
72 |
+
| 1.4636 | 8.96 | 224 | 1.6123 | 0.5475 | 0.58 | 0.5539 | 0.58 | 3.8539 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5607 | 78.1898 |
|
73 |
+
| 1.3683 | 10.24 | 256 | 1.5615 | 0.5829 | 0.595 | 0.6016 | 0.595 | 3.8527 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 41 | 24.5607 | 78.1898 |
|
74 |
+
| 1.2649 | 11.52 | 288 | 1.5261 | 0.5904 | 0.61 | 0.6243 | 0.61 | 3.8646 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 30 | 24.5607 | 78.1898 |
|
75 |
+
| 1.1968 | 12.8 | 320 | 1.4976 | 0.6012 | 0.615 | 0.6070 | 0.615 | 3.8766 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 45 | 24.5607 | 78.1898 |
|
76 |
+
| 1.1291 | 14.08 | 352 | 1.4756 | 0.5983 | 0.615 | 0.6164 | 0.615 | 3.8749 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 47 | 24.5607 | 78.1898 |
|
77 |
+
| 1.0673 | 15.36 | 384 | 1.4660 | 0.6064 | 0.62 | 0.6258 | 0.62 | 3.8752 | 83.4807 | 0.3907 | 12.8340 | 39.5640 | 35 | 24.5607 | 78.1898 |
|
78 |
+
| 0.9884 | 16.64 | 416 | 1.4410 | 0.6135 | 0.625 | 0.6204 | 0.625 | 3.8757 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 33 | 24.5608 | 78.1898 |
|
79 |
+
| 0.9743 | 17.92 | 448 | 1.4328 | 0.6233 | 0.635 | 0.6343 | 0.635 | 3.8747 | 83.4807 | 0.3905 | 12.8340 | 39.5640 | 44 | 24.5608 | 78.1898 |
|
80 |
+
| 0.926 | 19.2 | 480 | 1.4344 | 0.6088 | 0.615 | 0.6238 | 0.615 | 3.8742 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 31 | 24.5608 | 78.1898 |
|
81 |
+
| 0.8815 | 20.48 | 512 | 1.4282 | 0.6235 | 0.625 | 0.6350 | 0.625 | 4.0591 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 43 | 25.4337 | 78.1898 |
|
82 |
+
| 0.8613 | 21.76 | 544 | 1.4146 | 0.6329 | 0.635 | 0.6408 | 0.635 | 4.0655 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 26 | 25.4337 | 78.1898 |
|
83 |
+
| 0.8466 | 23.04 | 576 | 1.4086 | 0.6318 | 0.635 | 0.6415 | 0.635 | 4.0544 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 35 | 25.4337 | 78.1898 |
|
84 |
+
| 0.8282 | 24.32 | 608 | 1.4058 | 0.6243 | 0.63 | 0.6319 | 0.63 | 3.8886 | 83.4807 | 0.3904 | 12.8340 | 39.5640 | 27 | 25.4337 | 78.1898 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.31.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.13.1
|
92 |
+
- Tokenizers 0.13.3
|