--- language: en license: mit base_model: answerdotai/ModernBERT-base tags: - text-classification - ModernBERT-base datasets: - disham993/ElectricalDeviceFeedbackBalanced metrics: - epoch: 1.0 - eval_f1: 0.806771655637414 - eval_accuracy: 0.8269230769230769 - eval_runtime: 1.6141 - eval_samples_per_second: 837.642 - eval_steps_per_second: 13.63 --- # disham993/electrical-classification-ModernBERT-base ## Model description This model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) for text-classification tasks. ## Training Data The model was trained on the disham993/ElectricalDeviceFeedbackBalanced dataset. ## Model Details - **Base Model:** answerdotai/ModernBERT-base - **Task:** text-classification - **Language:** en - **Dataset:** disham993/ElectricalDeviceFeedbackBalanced ## Training procedure ### Training hyperparameters [Please add your training hyperparameters here] ## Evaluation results ### Metrics\n- epoch: 1.0\n- eval_f1: 0.806771655637414\n- eval_accuracy: 0.8269230769230769\n- eval_runtime: 1.6141\n- eval_samples_per_second: 837.642\n- eval_steps_per_second: 13.63 ## Usage ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-classification-ModernBERT-base") model = AutoModel.from_pretrained("disham993/electrical-classification-ModernBERT-base") ``` ## Limitations and bias [Add any known limitations or biases of the model] ## Training Infrastructure [Add details about training infrastructure used] ## Last update 2025-01-05