Trained with 1000000 steps and HF's parameters
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-1000000-steps.zip +2 -2
- ppo-LunarLander-v2-1000000-steps/data +9 -9
- ppo-LunarLander-v2-1000000-steps/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2-1000000-steps/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 265.63 +/- 22.85
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa70d43be50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa70d43bee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa70d43bf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa70d3bd040>", "_build": "<function ActorCriticPolicy._build at 0x7fa70d3bd0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa70d3bd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa70d3bd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa70d3bd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa70d3bd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa70d3bd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa70d3bd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa70d3be180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651839706.973791, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq9Xz58Wx09Bk8BuWf1abd5/LU+MKBgNgAAgD8AAIA/M4PuvFRK3j37re48rqOLvkGQFrtzMok8AAAAAAAAAAAmfs+9PHcsPXs+Bz5LvRm+zhq9vOpwO7wAAAAAAAAAAMAPkz63Wjo/mXmTPqR86776Z4E+ygbNOgAAAAAAAAAAAM4RPgpwQ7vLQ906p1rwvR6VyDtPFLS+AACAPwAAgD9DYJO+kfPWPidqBr0Ko8K+OXEKvlsdWT0AAAAAAAAAAG1QHT6kqV67KKSbvfBPOzwkSX24M8j6vAAAgD8AAIA/5nIgPUMBVz/I9Eo9j18yv0kAYD0TgBG9AAAAAAAAAAAzKJw9QaKiP2iXKD/yZC2/sBFiPGecRz4AAAAAAAAAAM0G/72FbdG72LAqPJT6VDwwMCg9WgY5vQAAgD8AAIA/DbgPPgFjhry2zU48HoA1PKuK7L075RM9AACAPwAAgD8AryY+j1Y1vA7d3DwWqiS7276WveyzB7wAAIA/AACAPzrVI77pfU682wWgu8p/FLqraLU91SDyOgAAgD8AAIA/wEcqvnaKVrz8doG75lP+uS9ZsT2BOLI6AACAPwAAgD8tPSu+QWiVvFYtiLtEwxu65yIBPqPn+zoAAIA/AACAPyaSLT4OgqG8hOI9PN7t5rowqA2+SV62uwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI36eq0MAgcUCUhpRSlIwBbJRNSAGMAXSUR0ChVLpK8L8adX2UKGgGaAloD0MIa7ddaO6KcECUhpRSlGgVS9BoFkdAoVU8NH6MznV9lChoBmgJaA9DCMu/lldu3XBAlIaUUpRoFUvMaBZHQKFVS1ZTyax1fZQoaAZoCWgPQwiTVRFuMplxQJSGlFKUaBVNMwFoFkdAoVYKq6vq1XV9lChoBmgJaA9DCL05XKt9X3NAlIaUUpRoFUvYaBZHQKFWIsbNr0t1fZQoaAZoCWgPQwiARunSP59wQJSGlFKUaBVNrgFoFkdAoVYr7ALy+nV9lChoBmgJaA9DCLcpHhcVA3NAlIaUUpRoFU0QAWgWR0ChVoRI8QqadX2UKGgGaAloD0MIkGrY70mAcECUhpRSlGgVS+RoFkdAoVaa5AhStXV9lChoBmgJaA9DCERPyqSGejdAlIaUUpRoFUu1aBZHQKFWxEG7jDN1fZQoaAZoCWgPQwhHV+nuuqtyQJSGlFKUaBVL3WgWR0ChVzqa5PM0dX2UKGgGaAloD0MIPuqvVxggc0CUhpRSlGgVTWABaBZHQKFXhg5zYEp1fZQoaAZoCWgPQwhbQj7o2eRuQJSGlFKUaBVL7GgWR0ChV5rCm/FjdX2UKGgGaAloD0MI78UX7bFdcUCUhpRSlGgVTRYBaBZHQKFYK7HQyAR1fZQoaAZoCWgPQwjIJvkRP/dwQJSGlFKUaBVL2GgWR0ChWIwLNOdodX2UKGgGaAloD0MItAOuK+YackCUhpRSlGgVTQQBaBZHQKFZMlJHy3F1fZQoaAZoCWgPQwiPUZ55OfNhQJSGlFKUaBVN6ANoFkdAoVl0XHim23V9lChoBmgJaA9DCDiHa7XHiHFAlIaUUpRoFUvFaBZHQKFZimJFb3Z1fZQoaAZoCWgPQwiOIQA49qdtQJSGlFKUaBVL3mgWR0ChWZHiNsFddX2UKGgGaAloD0MI5dGNsGjpcECUhpRSlGgVS+poFkdAoVmz7ZWaMXV9lChoBmgJaA9DCAK5xJHHoHBAlIaUUpRoFUv5aBZHQKFZ0tLcsUZ1fZQoaAZoCWgPQwjj/bj98iZiQJSGlFKUaBVN6ANoFkdAoVoGzY287XV9lChoBmgJaA9DCL+AXrizinFAlIaUUpRoFUvCaBZHQKFaIbrC3w11fZQoaAZoCWgPQwj3WWWmdLVxQJSGlFKUaBVL7WgWR0ChWiOdGy5adX2UKGgGaAloD0MI/N8RFWoDdECUhpRSlGgVS/hoFkdAoVpiwMYuTXV9lChoBmgJaA9DCHqmlxhLKWxAlIaUUpRoFUvQaBZHQKFalPwd8zB1fZQoaAZoCWgPQwguO8Q/7IxwQJSGlFKUaBVLwWgWR0ChWtwztTkydX2UKGgGaAloD0MIeQd40sLZbUCUhpRSlGgVS+5oFkdAoVriwB5ooXV9lChoBmgJaA9DCBd+cD61M3BAlIaUUpRoFUu7aBZHQKFbxovBacJ1fZQoaAZoCWgPQwgD7KNTV41wQJSGlFKUaBVL02gWR0ChXF5Cv5gxdX2UKGgGaAloD0MIS80eaEWRcECUhpRSlGgVS+BoFkdAoVxqKk2xZHV9lChoBmgJaA9DCGWmtP5WSHFAlIaUUpRoFUv6aBZHQKFcc1He7+V1fZQoaAZoCWgPQwiduByvQFFvQJSGlFKUaBVLxWgWR0ChXKWKEWZadX2UKGgGaAloD0MIPbfQlYitbkCUhpRSlGgVS99oFkdAoVzhyjpLVXV9lChoBmgJaA9DCHDurx738UlAlIaUUpRoFUvEaBZHQKFc8FA3T/h1fZQoaAZoCWgPQwjRBmADIkNuQJSGlFKUaBVL6WgWR0ChXSH7gsK9dX2UKGgGaAloD0MIfJ3Ul6VdQ0CUhpRSlGgVS9ZoFkdAoV1m1rqMWHV9lChoBmgJaA9DCOM1r+qsInJAlIaUUpRoFU1QAWgWR0ChXeyrHU+cdX2UKGgGaAloD0MIfgIoRhYMcECUhpRSlGgVTTMBaBZHQKFfIlRgqmV1fZQoaAZoCWgPQwgU0a+tX9dwQJSGlFKUaBVL7mgWR0ChXzZhjOLSdX2UKGgGaAloD0MIZ2Ml5lmmbUCUhpRSlGgVS+NoFkdAoV+vtrsSkHV9lChoBmgJaA9DCHnMQGV8yHBAlIaUUpRoFUvjaBZHQKFfxQO4G2V1fZQoaAZoCWgPQwgbZJKRs5VyQJSGlFKUaBVL/WgWR0ChYCLl/6O6dX2UKGgGaAloD0MInfaUnNOacECUhpRSlGgVS+VoFkdAoWCVtl7MPnV9lChoBmgJaA9DCEuUvaWccXJAlIaUUpRoFUv0aBZHQKFgmptrKvF1fZQoaAZoCWgPQwhFK/cCMwlxQJSGlFKUaBVL/GgWR0ChYKrRSgoPdX2UKGgGaAloD0MIZOjYQSVScUCUhpRSlGgVS9BoFkdAoWEsi8nNPnV9lChoBmgJaA9DCO2ePCzUH3FAlIaUUpRoFU0JAWgWR0ChYXryMDOkdX2UKGgGaAloD0MI527XS1MscUCUhpRSlGgVS+NoFkdAoWLJxrBTGnV9lChoBmgJaA9DCBLZB1kWVmdAlIaUUpRoFU3oA2gWR0ChYvJlJ6IFdX2UKGgGaAloD0MI7KUpAhxqbkCUhpRSlGgVS91oFkdAoWNM1uR9w3V9lChoBmgJaA9DCNI6qpqgo29AlIaUUpRoFUvGaBZHQKFjaFj/dZd1fZQoaAZoCWgPQwi2gxH7BBRwQJSGlFKUaBVNCAFoFkdAoWOCK508vHV9lChoBmgJaA9DCClcj8J1pmFAlIaUUpRoFU3oA2gWR0ChY4Zpi7TVdX2UKGgGaAloD0MIineAJ+2acECUhpRSlGgVS+5oFkdAoWOpO8Cgb3V9lChoBmgJaA9DCFCop49ABHFAlIaUUpRoFUvAaBZHQKFjz5AyEct1fZQoaAZoCWgPQwgwEW+dfwFvQJSGlFKUaBVL8GgWR0ChZHWvr4WUdX2UKGgGaAloD0MI3CqIge7vcECUhpRSlGgVS8ZoFkdAoWSo6nzg/HV9lChoBmgJaA9DCOJ0kq1u4XJAlIaUUpRoFUvPaBZHQKFmC2ycCo11fZQoaAZoCWgPQwhI/fUKy2xxQJSGlFKUaBVNWgFoFkdAoWYf6fra/XV9lChoBmgJaA9DCFwC8E8psHFAlIaUUpRoFUvCaBZHQKFmalhPTG51fZQoaAZoCWgPQwifAIqRpddvQJSGlFKUaBVLx2gWR0ChZr/qxC6ZdX2UKGgGaAloD0MIF5rrNNIDbkCUhpRSlGgVS99oFkdAoWb5y6tknXV9lChoBmgJaA9DCAvPS8XGF3FAlIaUUpRoFUvwaBZHQKFnDQSBbwB1fZQoaAZoCWgPQwgGLo814xNwQJSGlFKUaBVL52gWR0ChZx3P7el9dX2UKGgGaAloD0MIo8nFGJhBc0CUhpRSlGgVTQkBaBZHQKFnHiTdLxt1fZQoaAZoCWgPQwjH2AkvQV1vQJSGlFKUaBVNKgNoFkdAoWctZcLSeHV9lChoBmgJaA9DCM7g7xczZ2NAlIaUUpRoFU3oA2gWR0ChZ3RT850bdX2UKGgGaAloD0MIUS/4NKfGcECUhpRSlGgVS9FoFkdAoWfoJkXk53V9lChoBmgJaA9DCLrZHyh3YXNAlIaUUpRoFU3PAWgWR0ChaHCZnctYdX2UKGgGaAloD0MIS3LAribyY0CUhpRSlGgVTegDaBZHQKFopg5R0lt1fZQoaAZoCWgPQwhD5PT1fFpxQJSGlFKUaBVNLgFoFkdAoWkMbgjyF3V9lChoBmgJaA9DCC/9S1LZIHBAlIaUUpRoFUvcaBZHQKFpYjlgc951fZQoaAZoCWgPQwjIz0au259yQJSGlFKUaBVLy2gWR0ChaWVjRUm2dX2UKGgGaAloD0MIXOffLrvvcECUhpRSlGgVS89oFkdAoWoMKkVN6HV9lChoBmgJaA9DCOLK2TujyG5AlIaUUpRoFUvPaBZHQKFqHOqvNeN1fZQoaAZoCWgPQwiMZI9QM99yQJSGlFKUaBVNHAFoFkdAoWpD9Oymh3V9lChoBmgJaA9DCD25pkAmy3FAlIaUUpRoFUvXaBZHQKFqSowVTJh1fZQoaAZoCWgPQwiRZFbvMJZyQJSGlFKUaBVL2GgWR0ChapIwudwvdX2UKGgGaAloD0MIWyIXnAFCcUCUhpRSlGgVTUUBaBZHQKFrtFiKBNF1fZQoaAZoCWgPQwj6DKg3o61vQJSGlFKUaBVNDwFoFkdAoWvfO4XoDHV9lChoBmgJaA9DCEXURJ+Pwl5AlIaUUpRoFU3oA2gWR0Cha+XyqdYodX2UKGgGaAloD0MImE2AYXmjcUCUhpRSlGgVS+5oFkdAoWvt4JNTLnV9lChoBmgJaA9DCLhAguKHQnBAlIaUUpRoFUvxaBZHQKFsKTX8O091fZQoaAZoCWgPQwixahDmdjlwQJSGlFKUaBVL42gWR0ChbLeIMz/IdX2UKGgGaAloD0MIaObJNcV8cUCUhpRSlGgVTREBaBZHQKFtDf8/D+B1fZQoaAZoCWgPQwjI68GkuE1wQJSGlFKUaBVL/WgWR0ChbRp8neBQdX2UKGgGaAloD0MInu488Ry9b0CUhpRSlGgVS95oFkdAoW1MExIrfHV9lChoBmgJaA9DCExsPq4N/W9AlIaUUpRoFUvRaBZHQKFtosDnvDx1fZQoaAZoCWgPQwh4J58eWxdwQJSGlFKUaBVL82gWR0Chbdh42S+ydX2UKGgGaAloD0MICyjU0weeckCUhpRSlGgVTRYBaBZHQKFuU0rsjVx1fZQoaAZoCWgPQwhgrkULkPxxQJSGlFKUaBVL7GgWR0ChbzIHLRrrdX2UKGgGaAloD0MIQDOID2x6c0CUhpRSlGgVS+NoFkdAoW83hVENOXV9lChoBmgJaA9DCKd1G9Q+enFAlIaUUpRoFUvxaBZHQKFvfPC2tuF1fZQoaAZoCWgPQwhN2H4yRiRwQJSGlFKUaBVL/mgWR0Chb6i3PRiPdX2UKGgGaAloD0MIKsql8QsCcUCUhpRSlGgVS+1oFkdAoW+xT850bXV9lChoBmgJaA9DCKRUwhO6qHFAlIaUUpRoFUvRaBZHQKFwNjslb/x1fZQoaAZoCWgPQwi+3v3xXrdvQJSGlFKUaBVL5mgWR0ChcLpZW7vodX2UKGgGaAloD0MIrBqEuR0PcUCUhpRSlGgVS+5oFkdAoXFtDSgGr3V9lChoBmgJaA9DCFLVBFE33nBAlIaUUpRoFUvYaBZHQKFxmxoqTbF1fZQoaAZoCWgPQwhCWmPQySpxQJSGlFKUaBVNJwFoFkdAoXIf99+gDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.27 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.9.6", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.3", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa70d43be50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa70d43bee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa70d43bf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa70d3bd040>", "_build": "<function ActorCriticPolicy._build at 0x7fa70d3bd0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa70d3bd160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa70d3bd1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa70d3bd280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa70d3bd310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa70d3bd3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa70d3bd430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa70d3be180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651846838.0863905, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNl4DzhkIq65g9tM4pSPi79r6k5xPGuswAAgD8AAIA/M8I1PpeXID+Apa48lhTKvqvi9T0OpK48AAAAAAAAAACzowK9aSRJvDs2qz0QMqa9ld+SvTS5ib4AAIA/AACAP4D5Pb4DKvk+OnkwPjkeor7+rqg7sMHPPQAAAAAAAAAAWgTjvQ/uHj5VO+g9i1pjvvwVRjwP2pq8AAAAAAAAAABzrsq9w3Umuu3lYDTvkXYwDYjnOm9PlbMAAIA/AACAPwZUCz5pv10+Rl37vSGWh74KLAE9IOt2uAAAAAAAAAAAM9PPPdx8Aj+yeLG9NLq6vrIE4LyTWpC9AAAAAAAAAAB6nAQ+Bw6aP/6Lgz473Ay/xOohPvPhwj0AAAAAAAAAABozhr2vRZw/ntpgvvb16r5cq+m9hQqovQAAAAAAAAAA3UqKPhMOZT9tXZc+HP36vjrw0D4dqFi9AAAAAAAAAAAaSWS9bsXmPQ1Jnz2UKCO+YXA5PfYBajwAAAAAAAAAAC1RED7yH5k/BnPNPhqf075bTzo+rRpUPgAAAAAAAAAAs3AwvY7Vmz8wPFC+ZUvPvqgFb733cEK9AAAAAAAAAAAAtg+84emuPhAUgr0Oqpm+g6gAPYZgUr0AAAAAAAAAAODUoj5TlTk/r+Mlvjvvsb6rliI+LnlqvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqp1hastAcECUhpRSlIwBbJRL9YwBdJRHQMDFT0GVzIV1fZQoaAZoCWgPQwgYC0Pk9G1tQJSGlFKUaBVL/GgWR0DAxVD0z0pWdX2UKGgGaAloD0MIKpDZWfQfb0CUhpRSlGgVS/loFkdAwMVQTFl05nV9lChoBmgJaA9DCLOWAtL+2XBAlIaUUpRoFU0LAWgWR0DAxWDZtelbdX2UKGgGaAloD0MIg9+GGK/RbkCUhpRSlGgVTREBaBZHQMDFbSs8xKx1fZQoaAZoCWgPQwglWBzOfL5zQJSGlFKUaBVL9WgWR0DAxXkRvm5ldX2UKGgGaAloD0MINxlVhjGGckCUhpRSlGgVTREBaBZHQMDFfFCTlkp1fZQoaAZoCWgPQwjNP/omjZJyQJSGlFKUaBVNFwFoFkdAwMWGL4N7SnV9lChoBmgJaA9DCIdSexGtOnJAlIaUUpRoFU0eAWgWR0DAxbnbfxc3dX2UKGgGaAloD0MIr5emCPCdbUCUhpRSlGgVTR8BaBZHQMDFyV4oqkN1fZQoaAZoCWgPQwjXhopx/ilvQJSGlFKUaBVNIAFoFkdAwMXKAHVwxXV9lChoBmgJaA9DCDoDIy9rbnBAlIaUUpRoFU1VAWgWR0DAxdZ8c+7ldX2UKGgGaAloD0MI12mkpfKTckCUhpRSlGgVTRMBaBZHQMDF4WdupCN1fZQoaAZoCWgPQwjDmsqisC1xQJSGlFKUaBVL72gWR0DAxgchib2EdX2UKGgGaAloD0MIjGSPUPM2ckCUhpRSlGgVTRgBaBZHQMDGD7Ak9lp1fZQoaAZoCWgPQwg8akyIeTpzQJSGlFKUaBVNAAFoFkdAwMYoB2fTTnV9lChoBmgJaA9DCLpL4qxIbXBAlIaUUpRoFUv+aBZHQMDGJzKT0QN1fZQoaAZoCWgPQwjW/s72aFhyQJSGlFKUaBVNEgFoFkdAwMY5zbvgFXV9lChoBmgJaA9DCM0FLo91O3BAlIaUUpRoFUv/aBZHQMDGOplJ6IF1fZQoaAZoCWgPQwj2lQfpacVxQJSGlFKUaBVL92gWR0DAxlFs54nndX2UKGgGaAloD0MIhslUwajscECUhpRSlGgVTRABaBZHQMDGVvPcBU91fZQoaAZoCWgPQwh95qxPucdtQJSGlFKUaBVNBwFoFkdAwMZcERJ2+3V9lChoBmgJaA9DCO2akNYYfnBAlIaUUpRoFU0ZAWgWR0DAxnoRPGhmdX2UKGgGaAloD0MIbk+Q2G4eb0CUhpRSlGgVS+toFkdAwMaHC9h7V3V9lChoBmgJaA9DCAjlfRzN00hAlIaUUpRoFUvtaBZHQMDGmAqd6LR1fZQoaAZoCWgPQwjuXYO+tP5wQJSGlFKUaBVNlQFoFkdAwMajJsfq5nV9lChoBmgJaA9DCOT5DKg3ZnBAlIaUUpRoFU0NAWgWR0DAxrQ3BHkMdX2UKGgGaAloD0MIRn79EBuBbUCUhpRSlGgVTQsBaBZHQMDGv2W6bvx1fZQoaAZoCWgPQwjbT8b48GZzQJSGlFKUaBVNDwFoFkdAwMbOkxh2GXV9lChoBmgJaA9DCL9J06Bohj9AlIaUUpRoFUvKaBZHQMDG1yxRl6J1fZQoaAZoCWgPQwhfYizT72JxQJSGlFKUaBVL/WgWR0DAxuR6a9bpdX2UKGgGaAloD0MIWfj6Wpc5b0CUhpRSlGgVS/1oFkdAwMbsJu2qk3V9lChoBmgJaA9DCDCgF+4c+3BAlIaUUpRoFUvzaBZHQMDHC5FgDzR1fZQoaAZoCWgPQwhV2uIa3wxwQJSGlFKUaBVNEAFoFkdAwMcSHUtqYnV9lChoBmgJaA9DCLdB7bd2729AlIaUUpRoFU0YAWgWR0DAxysqJ/G3dX2UKGgGaAloD0MIshAdAsf1cECUhpRSlGgVTQABaBZHQMDHLcT8HfN1fZQoaAZoCWgPQwgi+yDLQglxQJSGlFKUaBVNCwFoFkdAwMc8RYA80XV9lChoBmgJaA9DCAvvchHfW3BAlIaUUpRoFUv6aBZHQMDHT/sNUfh1fZQoaAZoCWgPQwhHWipvR5ZwQJSGlFKUaBVNFwFoFkdAwMviivgWJ3V9lChoBmgJaA9DCCf6fJRRbXFAlIaUUpRoFU1UAWgWR0DAy+0QbuMNdX2UKGgGaAloD0MIHNKowEnUcUCUhpRSlGgVTSsBaBZHQMDMB0mD15B1fZQoaAZoCWgPQwhYA5SG2tVxQJSGlFKUaBVNCQFoFkdAwMwSfr8iwHV9lChoBmgJaA9DCFuyKsLNvG9AlIaUUpRoFUvsaBZHQMDMIPGZNPB1fZQoaAZoCWgPQwhfRNsxtQVyQJSGlFKUaBVNDwFoFkdAwMwppY9xInV9lChoBmgJaA9DCNC1L6BXTnFAlIaUUpRoFU0wAWgWR0DAzCs8mrsCdX2UKGgGaAloD0MIdv7tst9pc0CUhpRSlGgVTVQBaBZHQMDMOUb1h9d1fZQoaAZoCWgPQwivXkVGRzZwQJSGlFKUaBVNDgFoFkdAwMxHGSZBs3V9lChoBmgJaA9DCJmCNc6m13BAlIaUUpRoFU0xAWgWR0DAzE/IwM6SdX2UKGgGaAloD0MIwJZXrne4cUCUhpRSlGgVS/xoFkdAwMxWiY9gW3V9lChoBmgJaA9DCFK4HoVrC3BAlIaUUpRoFU0AAWgWR0DAzF92X9iudX2UKGgGaAloD0MI88zLYTcycECUhpRSlGgVTRABaBZHQMDMhxVZLZl1fZQoaAZoCWgPQwj6Qsh5/9VvQJSGlFKUaBVNBgFoFkdAwMyNxaPjn3V9lChoBmgJaA9DCKXap+OxdW9AlIaUUpRoFU0sAWgWR0DAzJ1wDNhWdX2UKGgGaAloD0MIGedvQmEEcECUhpRSlGgVTQEBaBZHQMDMxzgVGkN1fZQoaAZoCWgPQwg+r3jqkb5uQJSGlFKUaBVNMAFoFkdAwMzKTnJT2nV9lChoBmgJaA9DCBVYAFNGAnBAlIaUUpRoFUv+aBZHQMDMzt70Fr51fZQoaAZoCWgPQwg7bvjd9PRwQJSGlFKUaBVNAAFoFkdAwMzoiQkonnV9lChoBmgJaA9DCCKphZJJlW5AlIaUUpRoFU0FAWgWR0DAzPcbgjyGdX2UKGgGaAloD0MIYRqGj8h5cECUhpRSlGgVTQ4BaBZHQMDNDLt/nW91fZQoaAZoCWgPQwiUpdb7TZlxQJSGlFKUaBVNEAFoFkdAwM0XbcoH9nV9lChoBmgJaA9DCH0G1JtRm3BAlIaUUpRoFU0EAWgWR0DAzSyHEdeZdX2UKGgGaAloD0MIwCFUqVkicUCUhpRSlGgVTS4BaBZHQMDNNlbmlqJ1fZQoaAZoCWgPQwgwLH++LTBuQJSGlFKUaBVL/2gWR0DAzURwjt5VdX2UKGgGaAloD0MI0nDK3DzJcECUhpRSlGgVTS4BaBZHQMDNRT7di2F1fZQoaAZoCWgPQwg4TDRIASVyQJSGlFKUaBVNFwFoFkdAwM1PIf8uSXV9lChoBmgJaA9DCBTsv84NjnFAlIaUUpRoFUv4aBZHQMDNbSPuG9J1fZQoaAZoCWgPQwjGMZI9ApdyQJSGlFKUaBVNWwFoFkdAwM2CbxVhkXV9lChoBmgJaA9DCPpGdM86o3FAlIaUUpRoFUv4aBZHQMDNqoCMglp1fZQoaAZoCWgPQwgUWtb9o69wQJSGlFKUaBVNMQFoFkdAwM2zdUKiPHV9lChoBmgJaA9DCLQAbatZIHFAlIaUUpRoFU1NAWgWR0DAzbY6uGKydX2UKGgGaAloD0MIQ8cOKnFKcUCUhpRSlGgVTRoBaBZHQMDNxsKsuFp1fZQoaAZoCWgPQwgyAiocAUZwQJSGlFKUaBVNHwFoFkdAwM3R9fCyhXV9lChoBmgJaA9DCOzZc5ladXBAlIaUUpRoFU0gAWgWR0DAze5C+lCUdX2UKGgGaAloD0MIT8+7saDEcUCUhpRSlGgVTQQBaBZHQMDN+ldLQHB1fZQoaAZoCWgPQwivYBvxZDVvQJSGlFKUaBVNMgFoFkdAwM4PadMCcXV9lChoBmgJaA9DCGnIeJTKYXFAlIaUUpRoFU0AAWgWR0DAzh9xEORUdX2UKGgGaAloD0MIj1AzpAqzcECUhpRSlGgVS/NoFkdAwM4hnkDIR3V9lChoBmgJaA9DCCPZI9QM9G5AlIaUUpRoFUv7aBZHQMDOKPuPV/d1fZQoaAZoCWgPQwgjg9xFWBRxQJSGlFKUaBVNNQFoFkdAwM4xw6QvH3V9lChoBmgJaA9DCDcAGxBhZ3FAlIaUUpRoFU09AWgWR0DAzklDv3JxdX2UKGgGaAloD0MI7IhDNtA5cECUhpRSlGgVTUABaBZHQMDObKv3ai91fZQoaAZoCWgPQwg/48KBUIFwQJSGlFKUaBVNKQFoFkdAwM53LIPsiXV9lChoBmgJaA9DCI3w9iCEWnFAlIaUUpRoFUv0aBZHQMDOgaMzdk91fZQoaAZoCWgPQwjBjZQtUvVxQJSGlFKUaBVNIQFoFkdAwM6EoLofS3V9lChoBmgJaA9DCINqgxPRjHFAlIaUUpRoFUv/aBZHQMDOk8ophF51fZQoaAZoCWgPQwhvnX+7LLVyQJSGlFKUaBVL9mgWR0DAzqcjTrmhdX2UKGgGaAloD0MIgeofRDKbb0CUhpRSlGgVTScBaBZHQMDOszLns9l1fZQoaAZoCWgPQwgzi1BsRaFyQJSGlFKUaBVL/mgWR0DAzskY0l7ddX2UKGgGaAloD0MI/G66ZYcFb0CUhpRSlGgVTS0BaBZHQMDOy5D7ZWd1fZQoaAZoCWgPQwhBguLHGKJyQJSGlFKUaBVL/GgWR0DAztHTEzfrdX2UKGgGaAloD0MIueF3063KbkCUhpRSlGgVS+doFkdAwM7pg0CRwXV9lChoBmgJaA9DCHy0OGOYv3BAlIaUUpRoFU0FAWgWR0DAzut56dDqdX2UKGgGaAloD0MI5Lop5bX2bkCUhpRSlGgVS/1oFkdAwM70V4X403V9lChoBmgJaA9DCIl+bf10SHBAlIaUUpRoFU0DAWgWR0DAzwfHvMKUdX2UKGgGaAloD0MIFMyYgvUHcECUhpRSlGgVTRsBaBZHQMDPCdzOopB1fZQoaAZoCWgPQwieJ56zRZ5xQJSGlFKUaBVNEwFoFkdAwM8tQUHpr3V9lChoBmgJaA9DCK/PnPWpjHFAlIaUUpRoFUviaBZHQMDPMMqaw2V1fZQoaAZoCWgPQwi5/If0231SQJSGlFKUaBVLvGgWR0DAz0KB/ZuidX2UKGgGaAloD0MIaAWGrO5JbUCUhpRSlGgVTQQBaBZHQMDPQ1clgMN1fZQoaAZoCWgPQwhDq5MzVDhwQJSGlFKUaBVL9GgWR0DAz0rfrKNidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-generic-x86_64-with-glibc2.27 #123~18.04.1-Ubuntu SMP Fri Apr 8 09:48:52 UTC 2022", "Python": "3.9.6", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.3", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-1000000-steps.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34424d815064f3fe80f2e7fb38599e0258ce1dcac2954bc7f50608a754983d7b
|
3 |
+
size 144177
|
ppo-LunarLander-v2-1000000-steps/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,21 +69,21 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651846838.0863905,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNl4DzhkIq65g9tM4pSPi79r6k5xPGuswAAgD8AAIA/M8I1PpeXID+Apa48lhTKvqvi9T0OpK48AAAAAAAAAACzowK9aSRJvDs2qz0QMqa9ld+SvTS5ib4AAIA/AACAP4D5Pb4DKvk+OnkwPjkeor7+rqg7sMHPPQAAAAAAAAAAWgTjvQ/uHj5VO+g9i1pjvvwVRjwP2pq8AAAAAAAAAABzrsq9w3Umuu3lYDTvkXYwDYjnOm9PlbMAAIA/AACAPwZUCz5pv10+Rl37vSGWh74KLAE9IOt2uAAAAAAAAAAAM9PPPdx8Aj+yeLG9NLq6vrIE4LyTWpC9AAAAAAAAAAB6nAQ+Bw6aP/6Lgz473Ay/xOohPvPhwj0AAAAAAAAAABozhr2vRZw/ntpgvvb16r5cq+m9hQqovQAAAAAAAAAA3UqKPhMOZT9tXZc+HP36vjrw0D4dqFi9AAAAAAAAAAAaSWS9bsXmPQ1Jnz2UKCO+YXA5PfYBajwAAAAAAAAAAC1RED7yH5k/BnPNPhqf075bTzo+rRpUPgAAAAAAAAAAs3AwvY7Vmz8wPFC+ZUvPvqgFb733cEK9AAAAAAAAAAAAtg+84emuPhAUgr0Oqpm+g6gAPYZgUr0AAAAAAAAAAODUoj5TlTk/r+Mlvjvvsb6rliI+LnlqvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVYBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqp1hastAcECUhpRSlIwBbJRL9YwBdJRHQMDFT0GVzIV1fZQoaAZoCWgPQwgYC0Pk9G1tQJSGlFKUaBVL/GgWR0DAxVD0z0pWdX2UKGgGaAloD0MIKpDZWfQfb0CUhpRSlGgVS/loFkdAwMVQTFl05nV9lChoBmgJaA9DCLOWAtL+2XBAlIaUUpRoFU0LAWgWR0DAxWDZtelbdX2UKGgGaAloD0MIg9+GGK/RbkCUhpRSlGgVTREBaBZHQMDFbSs8xKx1fZQoaAZoCWgPQwglWBzOfL5zQJSGlFKUaBVL9WgWR0DAxXkRvm5ldX2UKGgGaAloD0MINxlVhjGGckCUhpRSlGgVTREBaBZHQMDFfFCTlkp1fZQoaAZoCWgPQwjNP/omjZJyQJSGlFKUaBVNFwFoFkdAwMWGL4N7SnV9lChoBmgJaA9DCIdSexGtOnJAlIaUUpRoFU0eAWgWR0DAxbnbfxc3dX2UKGgGaAloD0MIr5emCPCdbUCUhpRSlGgVTR8BaBZHQMDFyV4oqkN1fZQoaAZoCWgPQwjXhopx/ilvQJSGlFKUaBVNIAFoFkdAwMXKAHVwxXV9lChoBmgJaA9DCDoDIy9rbnBAlIaUUpRoFU1VAWgWR0DAxdZ8c+7ldX2UKGgGaAloD0MI12mkpfKTckCUhpRSlGgVTRMBaBZHQMDF4WdupCN1fZQoaAZoCWgPQwjDmsqisC1xQJSGlFKUaBVL72gWR0DAxgchib2EdX2UKGgGaAloD0MIjGSPUPM2ckCUhpRSlGgVTRgBaBZHQMDGD7Ak9lp1fZQoaAZoCWgPQwg8akyIeTpzQJSGlFKUaBVNAAFoFkdAwMYoB2fTTnV9lChoBmgJaA9DCLpL4qxIbXBAlIaUUpRoFUv+aBZHQMDGJzKT0QN1fZQoaAZoCWgPQwjW/s72aFhyQJSGlFKUaBVNEgFoFkdAwMY5zbvgFXV9lChoBmgJaA9DCM0FLo91O3BAlIaUUpRoFUv/aBZHQMDGOplJ6IF1fZQoaAZoCWgPQwj2lQfpacVxQJSGlFKUaBVL92gWR0DAxlFs54nndX2UKGgGaAloD0MIhslUwajscECUhpRSlGgVTRABaBZHQMDGVvPcBU91fZQoaAZoCWgPQwh95qxPucdtQJSGlFKUaBVNBwFoFkdAwMZcERJ2+3V9lChoBmgJaA9DCO2akNYYfnBAlIaUUpRoFU0ZAWgWR0DAxnoRPGhmdX2UKGgGaAloD0MIbk+Q2G4eb0CUhpRSlGgVS+toFkdAwMaHC9h7V3V9lChoBmgJaA9DCAjlfRzN00hAlIaUUpRoFUvtaBZHQMDGmAqd6LR1fZQoaAZoCWgPQwjuXYO+tP5wQJSGlFKUaBVNlQFoFkdAwMajJsfq5nV9lChoBmgJaA9DCOT5DKg3ZnBAlIaUUpRoFU0NAWgWR0DAxrQ3BHkMdX2UKGgGaAloD0MIRn79EBuBbUCUhpRSlGgVTQsBaBZHQMDGv2W6bvx1fZQoaAZoCWgPQwjbT8b48GZzQJSGlFKUaBVNDwFoFkdAwMbOkxh2GXV9lChoBmgJaA9DCL9J06Bohj9AlIaUUpRoFUvKaBZHQMDG1yxRl6J1fZQoaAZoCWgPQwhfYizT72JxQJSGlFKUaBVL/WgWR0DAxuR6a9bpdX2UKGgGaAloD0MIWfj6Wpc5b0CUhpRSlGgVS/1oFkdAwMbsJu2qk3V9lChoBmgJaA9DCDCgF+4c+3BAlIaUUpRoFUvzaBZHQMDHC5FgDzR1fZQoaAZoCWgPQwhV2uIa3wxwQJSGlFKUaBVNEAFoFkdAwMcSHUtqYnV9lChoBmgJaA9DCLdB7bd2729AlIaUUpRoFU0YAWgWR0DAxysqJ/G3dX2UKGgGaAloD0MIshAdAsf1cECUhpRSlGgVTQABaBZHQMDHLcT8HfN1fZQoaAZoCWgPQwgi+yDLQglxQJSGlFKUaBVNCwFoFkdAwMc8RYA80XV9lChoBmgJaA9DCAvvchHfW3BAlIaUUpRoFUv6aBZHQMDHT/sNUfh1fZQoaAZoCWgPQwhHWipvR5ZwQJSGlFKUaBVNFwFoFkdAwMviivgWJ3V9lChoBmgJaA9DCCf6fJRRbXFAlIaUUpRoFU1UAWgWR0DAy+0QbuMNdX2UKGgGaAloD0MIHNKowEnUcUCUhpRSlGgVTSsBaBZHQMDMB0mD15B1fZQoaAZoCWgPQwhYA5SG2tVxQJSGlFKUaBVNCQFoFkdAwMwSfr8iwHV9lChoBmgJaA9DCFuyKsLNvG9AlIaUUpRoFUvsaBZHQMDMIPGZNPB1fZQoaAZoCWgPQwhfRNsxtQVyQJSGlFKUaBVNDwFoFkdAwMwppY9xInV9lChoBmgJaA9DCNC1L6BXTnFAlIaUUpRoFU0wAWgWR0DAzCs8mrsCdX2UKGgGaAloD0MIdv7tst9pc0CUhpRSlGgVTVQBaBZHQMDMOUb1h9d1fZQoaAZoCWgPQwivXkVGRzZwQJSGlFKUaBVNDgFoFkdAwMxHGSZBs3V9lChoBmgJaA9DCJmCNc6m13BAlIaUUpRoFU0xAWgWR0DAzE/IwM6SdX2UKGgGaAloD0MIwJZXrne4cUCUhpRSlGgVS/xoFkdAwMxWiY9gW3V9lChoBmgJaA9DCFK4HoVrC3BAlIaUUpRoFU0AAWgWR0DAzF92X9iudX2UKGgGaAloD0MI88zLYTcycECUhpRSlGgVTRABaBZHQMDMhxVZLZl1fZQoaAZoCWgPQwj6Qsh5/9VvQJSGlFKUaBVNBgFoFkdAwMyNxaPjn3V9lChoBmgJaA9DCKXap+OxdW9AlIaUUpRoFU0sAWgWR0DAzJ1wDNhWdX2UKGgGaAloD0MIGedvQmEEcECUhpRSlGgVTQEBaBZHQMDMxzgVGkN1fZQoaAZoCWgPQwg+r3jqkb5uQJSGlFKUaBVNMAFoFkdAwMzKTnJT2nV9lChoBmgJaA9DCBVYAFNGAnBAlIaUUpRoFUv+aBZHQMDMzt70Fr51fZQoaAZoCWgPQwg7bvjd9PRwQJSGlFKUaBVNAAFoFkdAwMzoiQkonnV9lChoBmgJaA9DCCKphZJJlW5AlIaUUpRoFU0FAWgWR0DAzPcbgjyGdX2UKGgGaAloD0MIYRqGj8h5cECUhpRSlGgVTQ4BaBZHQMDNDLt/nW91fZQoaAZoCWgPQwiUpdb7TZlxQJSGlFKUaBVNEAFoFkdAwM0XbcoH9nV9lChoBmgJaA9DCH0G1JtRm3BAlIaUUpRoFU0EAWgWR0DAzSyHEdeZdX2UKGgGaAloD0MIwCFUqVkicUCUhpRSlGgVTS4BaBZHQMDNNlbmlqJ1fZQoaAZoCWgPQwgwLH++LTBuQJSGlFKUaBVL/2gWR0DAzURwjt5VdX2UKGgGaAloD0MI0nDK3DzJcECUhpRSlGgVTS4BaBZHQMDNRT7di2F1fZQoaAZoCWgPQwg4TDRIASVyQJSGlFKUaBVNFwFoFkdAwM1PIf8uSXV9lChoBmgJaA9DCBTsv84NjnFAlIaUUpRoFUv4aBZHQMDNbSPuG9J1fZQoaAZoCWgPQwjGMZI9ApdyQJSGlFKUaBVNWwFoFkdAwM2CbxVhkXV9lChoBmgJaA9DCPpGdM86o3FAlIaUUpRoFUv4aBZHQMDNqoCMglp1fZQoaAZoCWgPQwgUWtb9o69wQJSGlFKUaBVNMQFoFkdAwM2zdUKiPHV9lChoBmgJaA9DCLQAbatZIHFAlIaUUpRoFU1NAWgWR0DAzbY6uGKydX2UKGgGaAloD0MIQ8cOKnFKcUCUhpRSlGgVTRoBaBZHQMDNxsKsuFp1fZQoaAZoCWgPQwgyAiocAUZwQJSGlFKUaBVNHwFoFkdAwM3R9fCyhXV9lChoBmgJaA9DCOzZc5ladXBAlIaUUpRoFU0gAWgWR0DAze5C+lCUdX2UKGgGaAloD0MIT8+7saDEcUCUhpRSlGgVTQQBaBZHQMDN+ldLQHB1fZQoaAZoCWgPQwivYBvxZDVvQJSGlFKUaBVNMgFoFkdAwM4PadMCcXV9lChoBmgJaA9DCGnIeJTKYXFAlIaUUpRoFU0AAWgWR0DAzh9xEORUdX2UKGgGaAloD0MIj1AzpAqzcECUhpRSlGgVS/NoFkdAwM4hnkDIR3V9lChoBmgJaA9DCCPZI9QM9G5AlIaUUpRoFUv7aBZHQMDOKPuPV/d1fZQoaAZoCWgPQwgjg9xFWBRxQJSGlFKUaBVNNQFoFkdAwM4xw6QvH3V9lChoBmgJaA9DCDcAGxBhZ3FAlIaUUpRoFU09AWgWR0DAzklDv3JxdX2UKGgGaAloD0MI7IhDNtA5cECUhpRSlGgVTUABaBZHQMDObKv3ai91fZQoaAZoCWgPQwg/48KBUIFwQJSGlFKUaBVNKQFoFkdAwM53LIPsiXV9lChoBmgJaA9DCI3w9iCEWnFAlIaUUpRoFUv0aBZHQMDOgaMzdk91fZQoaAZoCWgPQwjBjZQtUvVxQJSGlFKUaBVNIQFoFkdAwM6EoLofS3V9lChoBmgJaA9DCINqgxPRjHFAlIaUUpRoFUv/aBZHQMDOk8ophF51fZQoaAZoCWgPQwhvnX+7LLVyQJSGlFKUaBVL9mgWR0DAzqcjTrmhdX2UKGgGaAloD0MIgeofRDKbb0CUhpRSlGgVTScBaBZHQMDOszLns9l1fZQoaAZoCWgPQwgzi1BsRaFyQJSGlFKUaBVL/mgWR0DAzskY0l7ddX2UKGgGaAloD0MI/G66ZYcFb0CUhpRSlGgVTS0BaBZHQMDOy5D7ZWd1fZQoaAZoCWgPQwhBguLHGKJyQJSGlFKUaBVL/GgWR0DAztHTEzfrdX2UKGgGaAloD0MIueF3063KbkCUhpRSlGgVS+doFkdAwM7pg0CRwXV9lChoBmgJaA9DCHy0OGOYv3BAlIaUUpRoFU0FAWgWR0DAzut56dDqdX2UKGgGaAloD0MI5Lop5bX2bkCUhpRSlGgVS/1oFkdAwM70V4X403V9lChoBmgJaA9DCIl+bf10SHBAlIaUUpRoFU0DAWgWR0DAzwfHvMKUdX2UKGgGaAloD0MIFMyYgvUHcECUhpRSlGgVTRsBaBZHQMDPCdzOopB1fZQoaAZoCWgPQwieJ56zRZ5xQJSGlFKUaBVNEwFoFkdAwM8tQUHpr3V9lChoBmgJaA9DCK/PnPWpjHFAlIaUUpRoFUviaBZHQMDPMMqaw2V1fZQoaAZoCWgPQwi5/If0231SQJSGlFKUaBVLvGgWR0DAz0KB/ZuidX2UKGgGaAloD0MIaAWGrO5JbUCUhpRSlGgVTQQBaBZHQMDPQ1clgMN1fZQoaAZoCWgPQwhDq5MzVDhwQJSGlFKUaBVL9GgWR0DAz0rfrKNidWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9kaXNrc2hpbWEvLnB5ZW52L3ZlcnNpb25zLzMuOS42L2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
ppo-LunarLander-v2-1000000-steps/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bfaefcad6162e53f437d597fa5e331a13f76222a5541adeb1caeca1c5abc7ce
|
3 |
+
size 84829
|
ppo-LunarLander-v2-1000000-steps/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:affb307b51052cbe84b32fc677554789e9db5ee062a7fdf897fc3253caeaeadf
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6579b8636ff8d2638997ccc541368c421f7c3772f82bf8c1465d9299e32ac779
|
3 |
+
size 234471
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.6348964103681, "std_reward": 22.850509201466213, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T23:41:49.778132"}
|