File size: 3,690 Bytes
bd05b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a31a95
bd05b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6253ab9
bd05b9a
 
 
 
 
 
 
 
 
38fb29b
bd05b9a
 
 
 
 
 
 
 
609a45a
38fb29b
bd05b9a
 
 
 
 
38fb29b
bd05b9a
38fb29b
bd05b9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a31a95
bd05b9a
e3f264f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
base_model: distilbert/distilgpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distily_norm_distilgpt2_sweep_extended
  results: []
---


# Summary

Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co/gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.

# Model description

More information needed

# Intended uses & limitations

More information needed
-->

# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 81,912,576
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.16 GB


# Benchmark Metrics Comparison

| Metric |  |
| :--- |

# Resource Usage Comparison

- VRAM Use: 15.6991 GB

# Distillation (Teacher -> Student) Architecture Difference:

- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 81,912,576
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.16 GB

<details>
<summary>Module Diff Details</summary>

```diff
--- teacher model modules
+++ student model modules
@@ -4,7 +4,7 @@
     (wpe): Embedding(1024, 768)
     (drop): Dropout(p=0.1, inplace=False)
     (h): ModuleList(
-      (0-11): 12 x GPT2Block(
+      (0-5): 6 x GPT2Block(
         (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (attn): GPT2FlashAttention2(
           (c_attn): Conv1D()

```

</details>
<br/>

# Train Dataset
Trained on 521,413,804 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.

- Num Samples: `990,000`
- Subset: `20231101.en`
- Split: `train`


# Training Objective

```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, norm=layernorm_teacher_only, projector=mlp))
```

# Hyperparameters
The following hyperparameters were used during training:

<details>
<summary>Expand</summary>

- learning_rate: `0.0002`
- train_batch_size: `8`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `polynomial`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, norm=layernorm_teacher_only, projector=mlp))`
- train_embeddings: `True`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7f9ba0948f10>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `distilbert/distilgpt2`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `False`
- dropout: `None`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `1000000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0`
- warmup_steps: `0`
- gradient_checkpointing: `True`

</details>
<br/>


# Framework Versions
- Distily 0.4.1
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0