File size: 3,584 Bytes
0b7f975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
base_model: distilbert/distilgpt2
datasets:
- wikimedia/wikipedia
library_name: Distily
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distily_validate_extra_grad_stats3
  results: []
---


# Summary

Distilled with [Distily](https://github.com/lapp0/distily) library
using teacher model [gpt2](https://huggingface.co/gpt2)
on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment.

# Model description

More information needed

# Intended uses & limitations

More information needed
-->

# Model Architecture:
- **Architecture**: `GPT2LMHeadModel`
- **Total Parameters**: 81,912,576
- **Data Type (dtype)**: torch.bfloat16
- **Model Size**: 0.16 GB


# Benchmark Metrics Comparison

| Metric |  |
| :--- |

# Resource Usage Comparison

- VRAM Use: 7.4255 GB

# Distillation (Teacher -> Student) Architecture Difference:

- **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel`
- **Total Parameters**: 124,439,808 -> 81,912,576
- **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16
- **Model Size**: 0.24 GB -> 0.16 GB

<details>
<summary>Module Diff Details</summary>

```diff
--- teacher model modules
+++ student model modules
@@ -4,7 +4,7 @@
     (wpe): Embedding(1024, 768)
     (drop): Dropout(p=0.1, inplace=False)
     (h): ModuleList(
-      (0-11): 12 x GPT2Block(
+      (0-5): 6 x GPT2Block(
         (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
         (attn): GPT2FlashAttention2(
           (c_attn): Conv1D()

```

</details>
<br/>

# Train Dataset
Trained on 6,816,188 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset.

- Num Samples: `9,900`
- Subset: `20231101.en`
- Split: `train`


# Training Objective

```
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal))
```

# Hyperparameters
The following hyperparameters were used during training:

<details>
<summary>Expand</summary>

- learning_rate: `0.0002`
- train_batch_size: `4`
- eval_batch_size: `8`
- seed: `42`
- optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08`
- lr_scheduler_type: `polynomial`
- num_epochs: `1.0`
- distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=raw_mse, layer_mapper=layer-2, projector=orthogonal))`
- lr_scheduler: `<torch.optim.lr_scheduler.LambdaLR object at 0x7f53f2d5d870>`
- student_model_name_or_path: `None`
- student_config_name_or_path: `distilbert/distilgpt2`
- student_model_config: `None`
- reinitialize_weights: `None`
- copy_teacher_modules: `[('lm_head', False)]`
- student_model_as_bitnet: `False`
- teacher_model_name_or_path: `gpt2`
- teacher_load_in_8bit: `False`
- teacher_load_in_4bit: `False`
- dataset_uri: `wikimedia/wikipedia`
- dataset_subset: `20231101.en`
- dataset_split: `train`
- dataset_column_name: `text`
- dataset_sample_size: `10000`
- dataset_test_size: `0.01`
- gradient_accumulation_steps: `1`
- weight_decay: `0.0`
- max_grad_norm: `1.0`
- warmup_ratio: `0`
- warmup_steps: `0`
- gradient_checkpointing: `True`

</details>
<br/>


# Framework Versions
- Distily 0.4.1
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 2.21.0