--- base_model: - 152334H/miqu-1-70b-sf - NeverSleep/MiquMaid-v1-70B - Sao10K/WinterGoddess-1.4x-70B-L2 library_name: transformers tags: - mergekit - merge --- # aranea-ancilla-116b-v1.0 **aka MiquMaid-v1-70B + interleaved WinterGoddess-1.4x-70B-L2** ![image/png](https://cdn-lfs-us-1.huggingface.co/repos/b8/27/b827a8b909d8601d579d04dbf9524d5437b2d132ff2b518a18ec16e6c1c21d4d/e5134400ec8efe9313c010654f4385f42474d2ce77d0bd235849f95d683c2e35?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27aranea-ancilla.png%3B+filename%3D%22aranea-ancilla.png%22%3B&response-content-type=image%2Fpng&Expires=1710576329&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcxMDU3NjMyOX19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2I4LzI3L2I4MjdhOGI5MDlkODYwMWQ1NzlkMDRkYmY5NTI0ZDU0MzdiMmQxMzJmZjJiNTE4YTE4ZWMxNmU2YzFjMjFkNGQvZTUxMzQ0MDBlYzhlZmU5MzEzYzAxMDY1NGY0Mzg1ZjQyNDc0ZDJjZTc3ZDBiZDIzNTg0OWY5NWQ2ODNjMmUzNT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=auQEMmxbglMR1BrezeeWnAMHrLQO5kprIlnyk1g%7EC75fXRzEuIlZUqmBPGy7mQDDXi5Iax8ibVzLUoWgzKC5tTPwGkHzyRRWAYUC5omiM27dpOMp4qqKra%7EDYktIq21XJigrfoqxqUUFUxOi9QQRBXsa2oEhcy3FT-cW6pCZud%7EwI151cCZqMzwKQ6xfoeVX326xh5I2qTaSqdwK7%7EUzq6uV5g2IGaLYrfulGtHfGnit%7E-02dauC-GoF6moCRKcCrRvVcyZLDvBRYoqVOhh6t8RKr6hkK36KJ%7EKADT-dfTjA3PaPsb%7EO3m426trPXqVPRnkJE7TEbzEvTbyyyk-xNg__&Key-Pair-Id=KCD77M1F0VK2B) A [mergekit](https://github.com/arcee-ai/mergekit) frankenmerge based on [NeverSleep/MiquMaid-v1-70B](https://huggingface.co/NeverSleep/MiquMaid-v1-70B) with interleaved layers of [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2). This was the top performing model from a series of merge experiments to create a highly coherant creative writing model. Tests consisted of a series of private benchmarks and manual comparisons. A number of different base models, interleave models and layer offsets were compared. - Usable context ~32768 - Recommended context ~16384 Non frankenstein miqu-1 finetunes generally outperform their frankenstein counterparts at very long contexts due to coherency loss. As a rough suggestion I might suggest swapping out to either [NeverSleep/MiquMaid-v1-70B](https://huggingface.co/NeverSleep/MiquMaid-v1-70B) or [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) after 16k context. Layers: 136 ### License No license. Component models based on the [Mistral AI Miqu-1](https://huggingface.co/miqudev/miqu-1-70b/tree/main) llama2 finetune that was released without license. ### Interesting observations from benchmarking - 10 layer interleave stride with a 20 layer interleave width consistently outperformed alternatives combinations. - Offsetting the interleaved model's first set of layers generally improved coherency. [14-30] reliably beat the [10-30] mergekit slice configuration for various combinations of models. - Quality of resulting merges can vary wildly. Whilst a merge of two strong models tends to produce a strong frankenstein model, this rule does not always hold true. ### Quantizations Exllamav2 quants will be available when bandwidth permits.