--- base_model: klue/roberta-small tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: begging_classification results: [] --- # begging_classification This model is a fine-tuned version of [klue/roberta-small](https://huggingface.co/klue/roberta-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0023 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 9 | 0.0986 | 1.0 | 0.92 | 0.9583 | 0.96 | | No log | 2.0 | 18 | 0.0059 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 27 | 0.0032 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 4.0 | 36 | 0.0025 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 5.0 | 45 | 0.0023 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1