New version with explicit predicate marking
Browse files- README.md +111 -0
- config.json +77 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: ai-forever/ruElectra-medium
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: rubert-electra-srl
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# rubert-electra-srl
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1501
|
19 |
+
- Addressee Precision: 0.9167
|
20 |
+
- Addressee Recall: 1.0
|
21 |
+
- Addressee F1: 0.9565
|
22 |
+
- Addressee Number: 11
|
23 |
+
- Benefactive Precision: 1.0
|
24 |
+
- Benefactive Recall: 0.5
|
25 |
+
- Benefactive F1: 0.6667
|
26 |
+
- Benefactive Number: 2
|
27 |
+
- Causator Precision: 0.8824
|
28 |
+
- Causator Recall: 0.8824
|
29 |
+
- Causator F1: 0.8824
|
30 |
+
- Causator Number: 17
|
31 |
+
- Cause Precision: 0.7778
|
32 |
+
- Cause Recall: 0.875
|
33 |
+
- Cause F1: 0.8235
|
34 |
+
- Cause Number: 8
|
35 |
+
- Contrsubject Precision: 0.7273
|
36 |
+
- Contrsubject Recall: 0.8421
|
37 |
+
- Contrsubject F1: 0.7805
|
38 |
+
- Contrsubject Number: 19
|
39 |
+
- Deliberative Precision: 0.6667
|
40 |
+
- Deliberative Recall: 0.6667
|
41 |
+
- Deliberative F1: 0.6667
|
42 |
+
- Deliberative Number: 3
|
43 |
+
- Destinative Precision: 1.0
|
44 |
+
- Destinative Recall: 1.0
|
45 |
+
- Destinative F1: 1.0
|
46 |
+
- Destinative Number: 1
|
47 |
+
- Directivefinal Precision: 0.3333
|
48 |
+
- Directivefinal Recall: 0.5
|
49 |
+
- Directivefinal F1: 0.4
|
50 |
+
- Directivefinal Number: 2
|
51 |
+
- Experiencer Precision: 0.8692
|
52 |
+
- Experiencer Recall: 0.9208
|
53 |
+
- Experiencer F1: 0.8942
|
54 |
+
- Experiencer Number: 101
|
55 |
+
- Instrument Precision: 1.0
|
56 |
+
- Instrument Recall: 0.3333
|
57 |
+
- Instrument F1: 0.5
|
58 |
+
- Instrument Number: 3
|
59 |
+
- Object Precision: 0.8612
|
60 |
+
- Object Recall: 0.8866
|
61 |
+
- Object F1: 0.8737
|
62 |
+
- Object Number: 238
|
63 |
+
- Overall Precision: 0.8527
|
64 |
+
- Overall Recall: 0.8864
|
65 |
+
- Overall F1: 0.8692
|
66 |
+
- Overall Accuracy: 0.9711
|
67 |
+
|
68 |
+
## Model description
|
69 |
+
|
70 |
+
More information needed
|
71 |
+
|
72 |
+
## Intended uses & limitations
|
73 |
+
|
74 |
+
More information needed
|
75 |
+
|
76 |
+
## Training and evaluation data
|
77 |
+
|
78 |
+
More information needed
|
79 |
+
|
80 |
+
## Training procedure
|
81 |
+
|
82 |
+
### Training hyperparameters
|
83 |
+
|
84 |
+
The following hyperparameters were used during training:
|
85 |
+
- learning_rate: 9.81632502988664e-05
|
86 |
+
- train_batch_size: 4
|
87 |
+
- eval_batch_size: 1
|
88 |
+
- seed: 605573
|
89 |
+
- gradient_accumulation_steps: 4
|
90 |
+
- total_train_batch_size: 16
|
91 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
92 |
+
- lr_scheduler_type: linear
|
93 |
+
- num_epochs: 5
|
94 |
+
|
95 |
+
### Training results
|
96 |
+
|
97 |
+
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
98 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
99 |
+
| 0.1641 | 1.0 | 465 | 0.1697 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8125 | 0.7647 | 0.7879 | 17 | 0.3333 | 0.375 | 0.3529 | 8 | 0.5926 | 0.8421 | 0.6957 | 19 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 2 | 0.8687 | 0.8515 | 0.86 | 101 | 0.0 | 0.0 | 0.0 | 3 | 0.7917 | 0.8782 | 0.8327 | 238 | 0.7916 | 0.8346 | 0.8125 | 0.9619 |
|
100 |
+
| 0.0897 | 2.0 | 931 | 0.1417 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7895 | 0.8824 | 0.8333 | 17 | 0.5714 | 0.5 | 0.5333 | 8 | 0.7083 | 0.8947 | 0.7907 | 19 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 0.0 | 2 | 0.8261 | 0.9406 | 0.8796 | 101 | 0.0 | 0.0 | 0.0 | 3 | 0.8275 | 0.8866 | 0.8560 | 238 | 0.8161 | 0.8765 | 0.8452 | 0.9662 |
|
101 |
+
| 0.05 | 3.0 | 1396 | 0.1233 | 0.8462 | 1.0 | 0.9167 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8333 | 0.8824 | 0.8571 | 17 | 0.5333 | 1.0 | 0.6957 | 8 | 0.8 | 0.8421 | 0.8205 | 19 | 0.5 | 0.6667 | 0.5714 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.5 | 0.5 | 0.5 | 2 | 0.9565 | 0.8713 | 0.9119 | 101 | 0.0 | 0.0 | 0.0 | 3 | 0.8889 | 0.8739 | 0.8814 | 238 | 0.8769 | 0.8617 | 0.8692 | 0.9728 |
|
102 |
+
| 0.0381 | 4.0 | 1862 | 0.1380 | 0.8462 | 1.0 | 0.9167 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8824 | 0.8824 | 0.8824 | 17 | 0.7778 | 0.875 | 0.8235 | 8 | 0.7727 | 0.8947 | 0.8293 | 19 | 0.4 | 0.6667 | 0.5 | 3 | 0.0 | 0.0 | 0.0 | 1 | 0.3333 | 0.5 | 0.4 | 2 | 0.8980 | 0.8713 | 0.8844 | 101 | 0.0 | 0.0 | 0.0 | 3 | 0.8814 | 0.8739 | 0.8776 | 238 | 0.8660 | 0.8617 | 0.8639 | 0.9711 |
|
103 |
+
| 0.0271 | 4.99 | 2325 | 0.1501 | 0.9167 | 1.0 | 0.9565 | 11 | 1.0 | 0.5 | 0.6667 | 2 | 0.8824 | 0.8824 | 0.8824 | 17 | 0.7778 | 0.875 | 0.8235 | 8 | 0.7273 | 0.8421 | 0.7805 | 19 | 0.6667 | 0.6667 | 0.6667 | 3 | 1.0 | 1.0 | 1.0 | 1 | 0.3333 | 0.5 | 0.4 | 2 | 0.8692 | 0.9208 | 0.8942 | 101 | 1.0 | 0.3333 | 0.5 | 3 | 0.8612 | 0.8866 | 0.8737 | 238 | 0.8527 | 0.8864 | 0.8692 | 0.9711 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.33.2
|
109 |
+
- Pytorch 2.0.1+cu117
|
110 |
+
- Datasets 2.14.5
|
111 |
+
- Tokenizers 0.13.3
|
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ai-forever/ruElectra-medium",
|
3 |
+
"architectures": [
|
4 |
+
"ElectraForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 576,
|
9 |
+
"generator_size": "0.25",
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 576,
|
13 |
+
"id2label": {
|
14 |
+
"0": "O",
|
15 |
+
"1": "B-Object",
|
16 |
+
"2": "B-Experiencer",
|
17 |
+
"3": "B-Cause",
|
18 |
+
"4": "B-Deliberative",
|
19 |
+
"5": "B-Causator",
|
20 |
+
"6": "B-ContrSubject",
|
21 |
+
"7": "B-Benefactive",
|
22 |
+
"8": "B-Addressee",
|
23 |
+
"9": "I-Object",
|
24 |
+
"10": "B-Destinative",
|
25 |
+
"11": "I-ContrSubject",
|
26 |
+
"12": "B-Instrument",
|
27 |
+
"13": "I-Deliberative",
|
28 |
+
"14": "B-DirectiveFinal",
|
29 |
+
"15": "B-Mediative",
|
30 |
+
"16": "I-DirectiveFinal",
|
31 |
+
"17": "B-DirectiveInitial",
|
32 |
+
"18": "I-DirectiveInitial",
|
33 |
+
"19": "I-Experiencer",
|
34 |
+
"20": "I-Cause"
|
35 |
+
},
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"intermediate_size": 2304,
|
38 |
+
"label2id": {
|
39 |
+
"B-Addressee": 8,
|
40 |
+
"B-Benefactive": 7,
|
41 |
+
"B-Causator": 5,
|
42 |
+
"B-Cause": 3,
|
43 |
+
"B-ContrSubject": 6,
|
44 |
+
"B-Deliberative": 4,
|
45 |
+
"B-Destinative": 10,
|
46 |
+
"B-DirectiveFinal": 14,
|
47 |
+
"B-DirectiveInitial": 17,
|
48 |
+
"B-Experiencer": 2,
|
49 |
+
"B-Instrument": 12,
|
50 |
+
"B-Mediative": 15,
|
51 |
+
"B-Object": 1,
|
52 |
+
"I-Cause": 20,
|
53 |
+
"I-ContrSubject": 11,
|
54 |
+
"I-Deliberative": 13,
|
55 |
+
"I-DirectiveFinal": 16,
|
56 |
+
"I-DirectiveInitial": 18,
|
57 |
+
"I-Experiencer": 19,
|
58 |
+
"I-Object": 9,
|
59 |
+
"O": 0
|
60 |
+
},
|
61 |
+
"layer_norm_eps": 1e-12,
|
62 |
+
"max_position_embeddings": 512,
|
63 |
+
"model_type": "electra",
|
64 |
+
"num_attention_heads": 9,
|
65 |
+
"num_hidden_layers": 12,
|
66 |
+
"pad_token_id": 0,
|
67 |
+
"position_embedding_type": "absolute",
|
68 |
+
"summary_activation": "gelu",
|
69 |
+
"summary_last_dropout": 0.1,
|
70 |
+
"summary_type": "first",
|
71 |
+
"summary_use_proj": true,
|
72 |
+
"torch_dtype": "float32",
|
73 |
+
"transformers_version": "4.33.2",
|
74 |
+
"type_vocab_size": 2,
|
75 |
+
"use_cache": true,
|
76 |
+
"vocab_size": 64000
|
77 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76969ff90e59d63a283f29d79849d50a5e46a1fb08fcd19317d3946f70d38c5f
|
3 |
+
size 340224041
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "ElectraTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75edf4b7e1d1ebc4ebe4474ec469d7a7b5fb8850237ebcdc4d5bfc3137a6e8c8
|
3 |
+
size 4155
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|