New version with explicit predicate marking
Browse files- README.md +58 -58
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -15,67 +15,67 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Addressee Precision: 0.
|
20 |
-
- Addressee Recall: 0
|
21 |
-
- Addressee F1: 0.
|
22 |
-
- Addressee Number:
|
23 |
- Benefactive Precision: 0.0
|
24 |
- Benefactive Recall: 0.0
|
25 |
- Benefactive F1: 0.0
|
26 |
-
- Benefactive Number:
|
27 |
-
- Causator Precision: 0.
|
28 |
-
- Causator Recall: 0.
|
29 |
-
- Causator F1: 0.
|
30 |
-
- Causator Number:
|
31 |
-
- Cause Precision: 0.
|
32 |
-
- Cause Recall: 0.
|
33 |
-
- Cause F1: 0.
|
34 |
-
- Cause Number:
|
35 |
-
- Contrsubject Precision: 0
|
36 |
-
- Contrsubject Recall: 0.
|
37 |
-
- Contrsubject F1: 0.
|
38 |
-
- Contrsubject Number:
|
39 |
-
- Deliberative Precision: 0.
|
40 |
-
- Deliberative Recall: 0
|
41 |
-
- Deliberative F1: 0.
|
42 |
-
- Deliberative Number:
|
43 |
- Destinative Precision: 1.0
|
44 |
-
- Destinative Recall: 0
|
45 |
-
- Destinative F1: 0
|
46 |
-
- Destinative Number:
|
47 |
- Directivefinal Precision: 1.0
|
48 |
-
- Directivefinal Recall: 0
|
49 |
-
- Directivefinal F1: 0
|
50 |
-
- Directivefinal Number:
|
51 |
-
- Experiencer Precision: 0.
|
52 |
-
- Experiencer Recall: 0.
|
53 |
-
- Experiencer F1: 0.
|
54 |
-
- Experiencer Number:
|
55 |
-
- Instrument Precision: 0.
|
56 |
-
- Instrument Recall: 0.
|
57 |
-
- Instrument F1: 0.
|
58 |
-
- Instrument Number:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
- Limitative Precision: 0.0
|
60 |
- Limitative Recall: 0.0
|
61 |
-
- Limitative F1: 0.0
|
62 |
-
- Limitative Number: 3
|
63 |
-
- Object Precision: 0.9449
|
64 |
-
- Object Recall: 0.9389
|
65 |
-
- Object F1: 0.9419
|
66 |
-
- Object Number: 1898
|
67 |
-
- Overall Precision: 0.9210
|
68 |
-
- Overall Recall: 0.9228
|
69 |
-
- Overall F1: 0.9219
|
70 |
-
- Overall Accuracy: 0.9855
|
71 |
-
- Mediative Number: 0.0
|
72 |
-
- Mediative F1: 0.0
|
73 |
-
- Mediative Precision: 0.0
|
74 |
-
- Mediative Recall: 0.0
|
75 |
-
- Directiveinitial Number: 0.0
|
76 |
- Directiveinitial F1: 0.0
|
|
|
77 |
- Directiveinitial Precision: 0.0
|
78 |
- Directiveinitial Recall: 0.0
|
|
|
|
|
|
|
|
|
79 |
|
80 |
## Model description
|
81 |
|
@@ -98,8 +98,8 @@ The following hyperparameters were used during training:
|
|
98 |
- train_batch_size: 1
|
99 |
- eval_batch_size: 1
|
100 |
- seed: 708526
|
101 |
-
- gradient_accumulation_steps:
|
102 |
-
- total_train_batch_size:
|
103 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
- lr_scheduler_type: linear
|
105 |
- lr_scheduler_warmup_ratio: 0.21
|
@@ -108,11 +108,11 @@ The following hyperparameters were used during training:
|
|
108 |
|
109 |
### Training results
|
110 |
|
111 |
-
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number |
|
112 |
-
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
|
117 |
|
118 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [ai-forever/ruElectra-medium](https://huggingface.co/ai-forever/ruElectra-medium) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0448
|
19 |
+
- Addressee Precision: 0.9583
|
20 |
+
- Addressee Recall: 1.0
|
21 |
+
- Addressee F1: 0.9787
|
22 |
+
- Addressee Number: 23
|
23 |
- Benefactive Precision: 0.0
|
24 |
- Benefactive Recall: 0.0
|
25 |
- Benefactive F1: 0.0
|
26 |
+
- Benefactive Number: 2
|
27 |
+
- Causator Precision: 0.9773
|
28 |
+
- Causator Recall: 0.9773
|
29 |
+
- Causator F1: 0.9773
|
30 |
+
- Causator Number: 44
|
31 |
+
- Cause Precision: 0.9259
|
32 |
+
- Cause Recall: 0.7143
|
33 |
+
- Cause F1: 0.8065
|
34 |
+
- Cause Number: 35
|
35 |
+
- Contrsubject Precision: 1.0
|
36 |
+
- Contrsubject Recall: 0.9429
|
37 |
+
- Contrsubject F1: 0.9706
|
38 |
+
- Contrsubject Number: 35
|
39 |
+
- Deliberative Precision: 0.9231
|
40 |
+
- Deliberative Recall: 1.0
|
41 |
+
- Deliberative F1: 0.9600
|
42 |
+
- Deliberative Number: 24
|
43 |
- Destinative Precision: 1.0
|
44 |
+
- Destinative Recall: 1.0
|
45 |
+
- Destinative F1: 1.0
|
46 |
+
- Destinative Number: 7
|
47 |
- Directivefinal Precision: 1.0
|
48 |
+
- Directivefinal Recall: 1.0
|
49 |
+
- Directivefinal F1: 1.0
|
50 |
+
- Directivefinal Number: 1
|
51 |
+
- Experiencer Precision: 0.9030
|
52 |
+
- Experiencer Recall: 0.9441
|
53 |
+
- Experiencer F1: 0.9231
|
54 |
+
- Experiencer Number: 286
|
55 |
+
- Instrument Precision: 0.9
|
56 |
+
- Instrument Recall: 0.9
|
57 |
+
- Instrument F1: 0.9
|
58 |
+
- Instrument Number: 10
|
59 |
+
- Object Precision: 0.9484
|
60 |
+
- Object Recall: 0.9519
|
61 |
+
- Object F1: 0.9502
|
62 |
+
- Object Number: 541
|
63 |
+
- Overall Precision: 0.9369
|
64 |
+
- Overall Recall: 0.9425
|
65 |
+
- Overall F1: 0.9397
|
66 |
+
- Overall Accuracy: 0.9883
|
67 |
+
- Limitative F1: 0.0
|
68 |
+
- Limitative Number: 0.0
|
69 |
- Limitative Precision: 0.0
|
70 |
- Limitative Recall: 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
- Directiveinitial F1: 0.0
|
72 |
+
- Directiveinitial Number: 0.0
|
73 |
- Directiveinitial Precision: 0.0
|
74 |
- Directiveinitial Recall: 0.0
|
75 |
+
- Mediative F1: 0.0
|
76 |
+
- Mediative Number: 0.0
|
77 |
+
- Mediative Precision: 0.0
|
78 |
+
- Mediative Recall: 0.0
|
79 |
|
80 |
## Model description
|
81 |
|
|
|
98 |
- train_batch_size: 1
|
99 |
- eval_batch_size: 1
|
100 |
- seed: 708526
|
101 |
+
- gradient_accumulation_steps: 8
|
102 |
+
- total_train_batch_size: 8
|
103 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
104 |
- lr_scheduler_type: linear
|
105 |
- lr_scheduler_warmup_ratio: 0.21
|
|
|
108 |
|
109 |
### Training results
|
110 |
|
111 |
+
| Training Loss | Epoch | Step | Validation Loss | Addressee Precision | Addressee Recall | Addressee F1 | Addressee Number | Benefactive Precision | Benefactive Recall | Benefactive F1 | Benefactive Number | Causator Precision | Causator Recall | Causator F1 | Causator Number | Cause Precision | Cause Recall | Cause F1 | Cause Number | Contrsubject Precision | Contrsubject Recall | Contrsubject F1 | Contrsubject Number | Deliberative Precision | Deliberative Recall | Deliberative F1 | Deliberative Number | Destinative Precision | Destinative Recall | Destinative F1 | Destinative Number | Directivefinal Precision | Directivefinal Recall | Directivefinal F1 | Directivefinal Number | Experiencer Precision | Experiencer Recall | Experiencer F1 | Experiencer Number | Instrument Precision | Instrument Recall | Instrument F1 | Instrument Number | Object Precision | Object Recall | Object F1 | Object Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Limitative F1 | Limitative Number | Limitative Precision | Limitative Recall | Directiveinitial F1 | Directiveinitial Number | Directiveinitial Precision | Directiveinitial Recall | Mediative F1 | Mediative Number | Mediative Precision | Mediative Recall |
|
112 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:----------------:|:-------------:|:---------:|:-------------:|:-----------------:|:--------------:|:----------:|:----------------:|:-------------:|:-----------------:|:--------------------:|:-----------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:------------:|:----------------:|:-------------------:|:----------------:|
|
113 |
+
| 0.1548 | 1.0 | 1471 | 0.1755 | 0.6667 | 0.5217 | 0.5854 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.5714 | 0.8182 | 0.6729 | 44 | 0.5217 | 0.3429 | 0.4138 | 35 | 0.4103 | 0.4571 | 0.4324 | 35 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 7 | 0.0 | 0.0 | 0.0 | 1 | 0.8645 | 0.8252 | 0.8444 | 286 | 0.0 | 0.0 | 0.0 | 10 | 0.7711 | 0.8965 | 0.8291 | 541 | 0.7627 | 0.7907 | 0.7764 | 0.9582 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
114 |
+
| 0.1209 | 2.0 | 2942 | 0.0797 | 0.9130 | 0.9130 | 0.9130 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.9348 | 0.9773 | 0.9556 | 44 | 0.8462 | 0.6286 | 0.7213 | 35 | 0.8889 | 0.9143 | 0.9014 | 35 | 0.75 | 0.875 | 0.8077 | 24 | 1.0 | 0.4286 | 0.6 | 7 | 0.0 | 0.0 | 0.0 | 1 | 0.8993 | 0.8741 | 0.8865 | 286 | 0.875 | 0.7 | 0.7778 | 10 | 0.9336 | 0.9094 | 0.9213 | 541 | 0.9138 | 0.8839 | 0.8986 | 0.9808 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
115 |
+
| 0.0559 | 3.0 | 4413 | 0.0448 | 0.9583 | 1.0 | 0.9787 | 23 | 0.0 | 0.0 | 0.0 | 2 | 0.9773 | 0.9773 | 0.9773 | 44 | 0.9259 | 0.7143 | 0.8065 | 35 | 1.0 | 0.9429 | 0.9706 | 35 | 0.9231 | 1.0 | 0.9600 | 24 | 1.0 | 1.0 | 1.0 | 7 | 1.0 | 1.0 | 1.0 | 1 | 0.9030 | 0.9441 | 0.9231 | 286 | 0.9 | 0.9 | 0.9 | 10 | 0.9484 | 0.9519 | 0.9502 | 541 | 0.9369 | 0.9425 | 0.9397 | 0.9883 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|
116 |
|
117 |
|
118 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 340184276
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8785a743b89774ab6f9dd50c0335b7a1c0940b89d59b792a79c2b6073f1b5beb
|
3 |
size 340184276
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5240
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38121bb19930abbe9fe43c2882365fe3897e692d8af4dabe0178c24e5df8ed1b
|
3 |
size 5240
|