File size: 5,657 Bytes
88a291e 566dbff 88a291e f9b5165 88a291e 89e2777 8c90089 8d866c0 c3b687e 8d866c0 8f704e3 3c27e83 8f704e3 3c27e83 56a273a 69d53a2 3c27e83 0039f4f e5abd54 f1c8288 e5abd54 f1c8288 e5abd54 f1c8288 e5abd54 f1c8288 e5abd54 f1c8288 e5abd54 f1c8288 e5abd54 a7523ac 8bbcc74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
language: it
license: apache-2.0
widget:
- text: "Il [MASK] ha chiesto revocarsi l'obbligo di pagamento"
---
<img src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/ITALIAN_LEGAL_BERT.jpg" width="600"/>
<h1> ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law </h1>
ITALIAN-LEGAL-BERT is based on <a href="https://huggingface.co/dbmdz/bert-base-italian-xxl-cased">bert-base-italian-xxl-cased</a> with additional pre-training of the Italian BERT model on Italian civil law corpora.
It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks.
<h2>Training procedure</h2>
We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT
and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential
Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture
with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with
linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed
by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB
<p />
<h2> Usage </h2>
ITALIAN-LEGAL-BERT model can be loaded like:
```python
from transformers import AutoModel, AutoTokenizer
model_name = "dlicari/Italian-Legal-BERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
```
You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT.
```python
from transformers import pipeline
model_name = "dlicari/Italian-Legal-BERT"
fill_mask = pipeline("fill-mask", model_name)
fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento")
#[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479},
# {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314},
# {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965},
# {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543},
# {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}]
```
here how to use it for sentence similarity
```python
import seaborn as sns
import matplotlib.pyplot as pl
from textwrap import wrap
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
# gettting Sentence Embeddings
def sentence_embeddings(sentences, model_name, max_length=512):
# load models
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=max_length, return_tensors='pt')
#Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
#Perform pooling. In this case, mean pooling
return mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
def plot_similarity(sentences, model_name):
# Get sentence embeddings produced by the model
embeddings = sentence_embeddings(sentences, model_name)
# Perfom similarity score using cosine similarity
corr = cosine_similarity(embeddings, embeddings)
# Plot heatmap similarity
sns.set(font_scale=1.2)
labels = [ '\n'.join(wrap(l, 40)) for l in sentences] # for text axis labels wrapping
g = sns.heatmap(
corr,
xticklabels=labels,
yticklabels=labels,
vmax=1,
cmap="YlOrRd")
g.set_xticklabels(labels, rotation=90)
model_short_name = model_name.split('/')[-1]
g.set_title(f"Semantic Textual Similarity ({model_short_name})")
plt.show()
# Sentences to be compared
sent = [
# 1. "The court shall pronounce the judgment for the dissolution or termination of the civil effects of marriage."
"Il tribunale pronuncia la sentenza per lo scioglimento o la cessazione degli effetti civili del matrimonio",
# 2. "having regard to Articles 1, 2, 3 No. 2(b) and 4 Paragraph 13 of Law No. 898 of December 1, 1970, as later amended."
# NOTE: Law Dec. 1, 1970 No. 898 is on divorce
"visti gli articoli 1, 2, 3 n. 2 lett. b) e 4 comma 13 della legge 1 dicembre 1970 n. 898 e successive modifiche",
# 3. "The plaintiff has lost the case."
"Il ricorrente ha perso la causa"
]
# Perform Semantic Textual Similarity using 'Italian-Legal-BERT'
model_name = "dlicari/Italian-Legal-BERT"
plot_similarity(sent, model_name)
# Perform Semantic Textual Similarity using 'bert-base-italian-xxl-cased'
model_name = 'dbmdz/bert-base-italian-xxl-cased'
plot_similarity(sent, model_name)
```
The similarity is shown in a heat map. The final graph is a 3x3 matrix in which each entry [i, j] is colored according to the cosine similarity of the encodings for sentences i and j
<img src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/semantic_text_similarity.jpg" width="700"/>
<h2> Citation </h2>
If you find our resource or paper is useful, please consider including the following citation in your paper.
```
@inproceedings{
}
``` |