--- language: it license: apache-2.0 widget: - text: "Il [MASK] ha chiesto revocarsi l'obbligo di pagamento" ---

ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law

ITALIAN-LEGAL-BERT is based on bert-base-italian-xxl-cased with additional pre-training of the Italian BERT model on Italian civil law corpora. It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks.

Training procedure

We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB ## Usage ITALIAN-LEGAL-BERT model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer model_name = "dlicari/Italian-Legal-BERT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. ```python from transformers import pipeline model_name = "dlicari/Italian-Legal-BERT" fill_mask = pipeline("fill-mask", model_name) fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento") #[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479}, # {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314}, # {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965}, # {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543}, # {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}] ``` here how to use it for sentence similarity ```python import seaborn as sns import matplotlib.pyplot as pl from textwrap import wrap #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # gettting Sentence Embeddings def sentence_embeddings(sentences, model_name, max_length=512): # load models tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=max_length, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling return mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy() def plot_similarity(sentences, model_name): # Get sentence embeddings produced by the model embeddings = sentence_embeddings(sentences, model_name) # Perfom similarity score using cosine similarity corr = cosine_similarity(embeddings, embeddings) # Plot heatmap similarity sns.set(font_scale=1.2) labels = [ '\n'.join(wrap(l, 40)) for l in sentences] # for text axis labels wrapping g = sns.heatmap( corr, xticklabels=labels, yticklabels=labels, vmax=1, cmap="YlOrRd") g.set_xticklabels(labels, rotation=90) model_short_name = model_name.split('/')[-1] g.set_title(f"Semantic Textual Similarity ({model_short_name})") plt.show() # Sentences to be compared sent = [ # 1. "The court shall pronounce the judgment for the dissolution or termination of the civil effects of marriage." "Il tribunale pronuncia la sentenza per lo scioglimento o la cessazione degli effetti civili del matrimonio", # 2. "having regard to Articles 1, 2, 3 No. 2(b) and 4 Paragraph 13 of Law No. 898 of December 1, 1970, as later amended." # NOTE: Law Dec. 1, 1970 No. 898 is on divorce "visti gli articoli 1, 2, 3 n. 2 lett. b) e 4 comma 13 della legge 1 dicembre 1970 n. 898 e successive modifiche", # 3. "The plaintiff has lost the case." "Il ricorrente ha perso la causa" ] # Perform Semantic Textual Similarity using 'Italian-Legal-BERT' model_name = "dlicari/Italian-Legal-BERT" plot_similarity(sent, model_name) # Perform Semantic Textual Similarity using 'bert-base-italian-xxl-cased' model_name = 'dbmdz/bert-base-italian-xxl-cased' plot_similarity(sent, model_name) ```