File size: 1,593 Bytes
7dc7b47 056f0c1 d2ad0fe 056f0c1 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 056f0c1 d2ad0fe 056f0c1 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 4320b4e 056f0c1 d2ad0fe 056f0c1 d2ad0fe 056f0c1 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 056f0c1 7dc7b47 d2ad0fe 7dc7b47 d2ad0fe 056f0c1 d2ad0fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: neural-matia-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# neural-matia-ft
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.8818 | 1.0 | 9 | 2.1682 |
| 1.6144 | 2.0 | 18 | 0.7967 |
| 0.6399 | 3.0 | 27 | 0.4156 |
| 0.4238 | 4.0 | 36 | 0.3653 |
| 0.381 | 5.0 | 45 | 0.3535 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.16.0
- Tokenizers 0.15.2 |