File size: 1,910 Bytes
7dc7b47
d2ad0fe
 
 
 
 
 
 
 
7dc7b47
 
d2ad0fe
 
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
 
9170f03
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
 
 
 
 
 
 
 
 
 
9170f03
d2ad0fe
7dc7b47
d2ad0fe
7dc7b47
d2ad0fe
 
9170f03
 
 
 
 
 
 
 
 
7dc7b47
 
d2ad0fe
7dc7b47
d2ad0fe
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
model-index:
- name: neural-matia-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# neural-matia-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6516

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.9004        | 0.89  | 6    | 3.0020          |
| 2.3511        | 1.93  | 13   | 1.9686          |
| 1.4935        | 2.96  | 20   | 1.1307          |
| 0.9547        | 4.0   | 27   | 0.8176          |
| 0.8782        | 4.89  | 33   | 0.7137          |
| 0.6879        | 5.93  | 40   | 0.6794          |
| 0.6661        | 6.96  | 47   | 0.6609          |
| 0.6421        | 8.0   | 54   | 0.6534          |
| 0.6662        | 8.89  | 60   | 0.6516          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2