--- language: - sw license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_14_0 metrics: - wer model-index: - name: Whisper Large - Denis Musinguzi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 14.0 type: mozilla-foundation/common_voice_14_0 config: lg split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 0.24669449134992194 --- # Whisper Large - Denis Musinguzi This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2966 - Wer: 0.2467 - Cer: 0.0700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 0.6329 | 0.61 | 1600 | 0.0878 | 0.3515 | 0.3385 | | 0.2241 | 1.22 | 3200 | 0.0589 | 0.3045 | 0.2517 | | 0.1618 | 1.82 | 4800 | 0.0707 | 0.2801 | 0.2645 | | 0.1109 | 2.43 | 6400 | 0.0774 | 0.2870 | 0.2580 | | 0.0837 | 3.04 | 8000 | 0.0597 | 0.2900 | 0.2333 | | 0.045 | 3.65 | 9600 | 0.2966 | 0.2467 | 0.0700 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2