import torch from agents.perception_module import PerceptionAgent from agents.decision_module import DecisionAgent from agents.action_module import ActionAgent class MasterAgent: def __init__(self, config): self.perception_agent = PerceptionAgent(config) self.decision_agent = DecisionAgent(config) self.action_agent = ActionAgent(config) self.reinforcement_learning = config.get("reinforcement_learning", True) def forward(self, inputs): # Process inputs through the perception agent perception_output = self.perception_agent(inputs) # Pass perception results to decision agent decision_output = self.decision_agent(perception_output) # Execute the chosen action action_output = self.action_agent(decision_output) return action_output def learn(self, feedback): # Implement reinforcement learning logic to adjust task allocation if self.reinforcement_learning: # Update sub-agent weights based on feedback pass