--- license: mit datasets: - unicamp-dl/mmarco language: - de --- # ColBERTv2-mmarco-de-0.1 This is a German ColBERT implementation based on [colbert-ir/colbertv2.0](https://huggingface.co/colbert-ir/colbertv2.0) - Base Model: [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) - Training Data: [unicamp-dl/mmarco](https://huggingface.co/unicamp-dl/mMiniLM-L6-v2-mmarco-v2) --> 10Mio random sample - Framework used for training [RAGatouille](https://github.com/bclavie/RAGatouille) Thanks a ton [@bclavie](https://huggingface.co/bclavie) ! As I'm limited on GPU Training did not go through all the way. "Only" 10 checkpoints were trained. # Code My code is probably a mess, but YOLO! ## data prep ```python from datasets import load_dataset from ragatouille import RAGTrainer from tqdm import tqdm import pickle from concurrent.futures import ThreadPoolExecutor from tqdm.notebook import tqdm import concurrent SAMPLE_SIZE = -1 def int_to_string(number): if number < 0: return "full" elif number < 1000: return str(number) elif number < 1000000: return f"{number // 1000}K" elif number >= 1000000: return f"{number // 1000000}M" def process_chunk(chunk): return [list(item) for item in zip(chunk["query"], chunk["positive"], chunk["negative"])] def chunked_iterable(iterable, chunk_size): """Yield successive chunks from iterable.""" for i in range(0, len(iterable), chunk_size): yield iterable[i:i + chunk_size] def process_dataset_concurrently(dataset, chunksize=1000): with ThreadPoolExecutor() as executor: # Wrap the dataset with tqdm for real-time updates wrapped_dataset = tqdm(chunked_iterable(dataset, chunksize), total=(len(dataset) + chunksize - 1) // chunksize) # Submit each chunk to the executor futures = [executor.submit(process_chunk, chunk) for chunk in wrapped_dataset] results = [] for future in concurrent.futures.as_completed(futures): results.extend(future.result()) return results dataset = load_dataset('unicamp-dl/mmarco', 'german', trust_remote_code=True) # Shuffle the dataset and seed for reproducibility if needed shuffled_dataset = dataset['train'].shuffle(seed=42) if SAMPLE_SIZE > 0: sampled_dataset = shuffled_dataset.select(range(SAMPLE_SIZE)) else: sampled_dataset = shuffled_dataset triplets = process_dataset_concurrently(sampled_dataset, chunksize=10000) trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",) trainer.prepare_training_data(raw_data=triplets, mine_hard_negatives=False) ``` ## Training ```python from datasets import load_dataset import os from ragatouille import RAGTrainer from tqdm import tqdm import pickle from concurrent.futures import ThreadPoolExecutor from tqdm.notebook import tqdm import concurrent from pathlib import Path def int_to_string(number): if number < 1000: return str(number) elif number < 1000000: return f"{number // 1000}K" elif number >= 1000000: return f"{number // 1000000}M" SAMPLE_SIZE = 1000000 trainer = RAGTrainer(model_name=f"ColBERT-mmacro-de-{int_to_string(SAMPLE_SIZE)}", pretrained_model_name="dbmdz/bert-base-german-cased", language_code="de",) trainer.data_dir = Path("/kaggle/input/mmarco-de-10m") trainer.train(batch_size=32, nbits=4, # How many bits will the trained model use when compressing indexes maxsteps=500000, # Maximum steps hard stop use_ib_negatives=True, # Use in-batch negative to calculate loss dim=128, # How many dimensions per embedding. 128 is the default and works well. learning_rate=5e-6, # Learning rate, small values ([3e-6,3e-5] work best if the base model is BERT-like, 5e-6 is often the sweet spot) doc_maxlen=256, # Maximum document length. Because of how ColBERT works, smaller chunks (128-256) work very well. use_relu=False, # Disable ReLU -- doesn't improve performance warmup_steps="auto", # Defaults to 10% ) ```