dominiks commited on
Commit
0802241
1 Parent(s): 3c4e800

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 192.47 +/- 76.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8e20559e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8e2055a70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8e2055b00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8e2055b90>", "_build": "<function ActorCriticPolicy._build at 0x7fa8e2055c20>", "forward": "<function ActorCriticPolicy.forward at 0x7fa8e2055cb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8e2055d40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa8e2055dd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8e2055e60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8e2055ef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8e2055f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa8e20a1750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1666632931128208647, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAL1Lm762Liq8uldSO/DiSTkYeIg9igr3uQAAgD8AAIA/TS8rPiiWibzJqQW67AkrOK6k+721gTM5AACAPwAAgD/tHVM+BKUDP5JwTb5yLH6+rOumvdgD5DkAAAAAAAAAAGbn0Lz2yBa602Wuu/wUUTgWYPC6CEgBOAAAgD8AAIA/zc4WPtfaSbvrJPM7TgH0txSPjLw9IYC6AACAPwAAgD8zx3697EmOuR2EP7bwc/E7ucxMOx1wWD0AAAAAAAAAAJph27sK1yS35BqBu9E677YwUGg6f0uXOgAAgD8AAIA/Wh/1PfYJPjsty2K9wgYXvN+lqjxCYgS9AACAPwAAgD8AJVE9XAMMuqY5rjreT381wug5uokgy7kAAIA/AACAP8DMV77dJBG9w84jO9er3jl69X0+IrxlugAAgD8AAIA/ABAhPa4lmrqOuGY7ALjFtY589TkeO4W6AACAPwAAgD+AnBK+cVUPu1d7x7jRFWK1rWtYPGP/6DcAAIA/AACAPzOQkz2uZYS6s2KzuynBNrO4X+e5rv9QMwAAgD8AAIA/FV+MvkwQTD7J5Rs++T41vo4gHD2b0zA9AAAAAAAAAABNQbk9XHMsuu5hiTtf9Kw1Y0qqO2GppzQAAIA/AACAP80sqLzDwRy6xo1ju4zFhbbHSce6yCKHOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIejTVk/lSYECUhpRSlIwBbJRN6AOMAXSUR0CUN6g8KXv6dX2UKGgGaAloD0MIdha9UwFQXkCUhpRSlGgVTegDaBZHQJQ41bD/EO11fZQoaAZoCWgPQwifPCzUmuteQJSGlFKUaBVN6ANoFkdAlDvks4DLbHV9lChoBmgJaA9DCP94r1oZ12JAlIaUUpRoFU3oA2gWR0CUPhQCSzPbdX2UKGgGaAloD0MIfJ4/bVSHLcCUhpRSlGgVS85oFkdAlENQ7PppvnV9lChoBmgJaA9DCANDVrd6zF1AlIaUUpRoFU3oA2gWR0CUR+siB5HFdX2UKGgGaAloD0MIw9SWOsioVUCUhpRSlGgVTegDaBZHQJRKO2x6fJ51fZQoaAZoCWgPQwj4cTRHVvxkQJSGlFKUaBVN6ANoFkdAlEr/AwfyPXV9lChoBmgJaA9DCABTBg5og11AlIaUUpRoFU3oA2gWR0CUULSzPa+OdX2UKGgGaAloD0MIWJBmLJpUZECUhpRSlGgVTegDaBZHQJRSInQY1pF1fZQoaAZoCWgPQwicielCrPVeQJSGlFKUaBVN6ANoFkdAlGLEVBUrCnV9lChoBmgJaA9DCAoS292DImVAlIaUUpRoFU3oA2gWR0CUf3AO8TSLdX2UKGgGaAloD0MI9kArMOQOZkCUhpRSlGgVTegDaBZHQJSD7ocJdB11fZQoaAZoCWgPQwiJ8C+CxllfQJSGlFKUaBVN6ANoFkdAlISgflp48nV9lChoBmgJaA9DCPlNYaWCxF1AlIaUUpRoFU3oA2gWR0CUh0EZzgdfdX2UKGgGaAloD0MIri6nBERsYUCUhpRSlGgVTegDaBZHQJSKMRlHz6J1fZQoaAZoCWgPQwgyHxDozJBgQJSGlFKUaBVN6ANoFkdAlIsfoePq93V9lChoBmgJaA9DCDHtm/urv2BAlIaUUpRoFU3oA2gWR0CUjdOavzOHdX2UKGgGaAloD0MIw7ZFmQ1jY0CUhpRSlGgVTegDaBZHQJSRC6I3zc11fZQoaAZoCWgPQwgIkncOZVZbQJSGlFKUaBVN6ANoFkdAlJLyPIXCTHV9lChoBmgJaA9DCDYiGAcXKmNAlIaUUpRoFU3oA2gWR0CUl99deIEbdX2UKGgGaAloD0MIlE+PbRkrZkCUhpRSlGgVTegDaBZHQJScCp5u63B1fZQoaAZoCWgPQwj7Bbth285ZQJSGlFKUaBVN6ANoFkdAlJ4pGe+VT3V9lChoBmgJaA9DCH6pnzcVLVxAlIaUUpRoFU3oA2gWR0CUnu5ftx+8dX2UKGgGaAloD0MI4h5LH7rwXECUhpRSlGgVTegDaBZHQJSk31ct5D91fZQoaAZoCWgPQwgw9IjRc49iQJSGlFKUaBVN6ANoFkdAlKZV4oqkM3V9lChoBmgJaA9DCI0OSMI+CGZAlIaUUpRoFU3oA2gWR0CUt3lz2exwdX2UKGgGaAloD0MInQ35Z4bmYECUhpRSlGgVTegDaBZHQJTUoQNCqp91fZQoaAZoCWgPQwgRGOsbGJ9lQJSGlFKUaBVN6ANoFkdAlNmF5WzWw3V9lChoBmgJaA9DCCHLgok/C2JAlIaUUpRoFU3oA2gWR0CU2k+oLofTdX2UKGgGaAloD0MI5Nak25KFYUCUhpRSlGgVTegDaBZHQJTdWAPNFBp1fZQoaAZoCWgPQwhKRWPtb4dhQJSGlFKUaBVN6ANoFkdAlODcvduYQnV9lChoBmgJaA9DCA8J3/sbzl9AlIaUUpRoFU3oA2gWR0CU4fj7hvR7dX2UKGgGaAloD0MI1PNuLCh2XUCUhpRSlGgVTegDaBZHQJTlBUbT+eh1fZQoaAZoCWgPQwgvGFxzRx8uQJSGlFKUaBVNGAFoFkdAlOjOkpI+XHV9lChoBmgJaA9DCFJ95xclCGJAlIaUUpRoFU3oA2gWR0CU6N55JK8MdX2UKGgGaAloD0MIIqXZPA5aXECUhpRSlGgVTegDaBZHQJTrCRYA80V1fZQoaAZoCWgPQwjxm8JKhTlgQJSGlFKUaBVN6ANoFkdAlPC+glF+eHV9lChoBmgJaA9DCCGunL0zOg9AlIaUUpRoFU2HAWgWR0CU85x8D0UXdX2UKGgGaAloD0MISDfCoqIVYkCUhpRSlGgVTegDaBZHQJT1VrFfiP11fZQoaAZoCWgPQwipFabvNUJeQJSGlFKUaBVN6ANoFkdAlPekauOjqXV9lChoBmgJaA9DCJf/kH57LmdAlIaUUpRoFU3oA2gWR0CU+HJ+DvmYdX2UKGgGaAloD0MI0Jfe/twYZkCUhpRSlGgVTegDaBZHQJT+zWrfcet1fZQoaAZoCWgPQwjGaYgq/CxeQJSGlFKUaBVN6ANoFkdAlQBc+3YthHV9lChoBmgJaA9DCJjD7juGhyNAlIaUUpRoFUvzaBZHQJUJmgwoLG91fZQoaAZoCWgPQwijWG5pNUdbQJSGlFKUaBVN6ANoFkdAlRHx6Ww/xHV9lChoBmgJaA9DCKQ5svLLC11AlIaUUpRoFU3oA2gWR0CVNXbyH2ytdX2UKGgGaAloD0MIY15HHDJ/Y0CUhpRSlGgVTegDaBZHQJU46GSIP9V1fZQoaAZoCWgPQwgjg9xFGBNkQJSGlFKUaBVN6ANoFkdAlTzncxj8UHV9lChoBmgJaA9DCDcz+tFwWWNAlIaUUpRoFU3oA2gWR0CVPi3evZAZdX2UKGgGaAloD0MIq5Se6aXuYECUhpRSlGgVTegDaBZHQJVB2MsH0K91fZQoaAZoCWgPQwgVyOwsem9fQJSGlFKUaBVN6ANoFkdAlUYtD2Jzk3V9lChoBmgJaA9DCAyVfy2vq2NAlIaUUpRoFU3oA2gWR0CVRj7cO9WZdX2UKGgGaAloD0MI+I2vPbPEX0CUhpRSlGgVTegDaBZHQJVIalO45Lh1fZQoaAZoCWgPQwhq9kArsBBlQJSGlFKUaBVN6ANoFkdAlU4FclgMMXV9lChoBmgJaA9DCHNp/MKrbGNAlIaUUpRoFU3oA2gWR0CVUKUGFBY3dX2UKGgGaAloD0MIV3vYC4XNZUCUhpRSlGgVTegDaBZHQJVSPECNjsl1fZQoaAZoCWgPQwiIvruVpaFhQJSGlFKUaBVN6ANoFkdAlVRQ/X5FgHV9lChoBmgJaA9DCB9N9WT+JGRAlIaUUpRoFU3oA2gWR0CVW25gPVd5dX2UKGgGaAloD0MIxJj099KRYkCUhpRSlGgVTegDaBZHQJVc88uBczJ1fZQoaAZoCWgPQwgAAWvVrrElQJSGlFKUaBVNIQFoFkdAlWSWplz2e3V9lChoBmgJaA9DCJ7OFaUEQWRAlIaUUpRoFU3oA2gWR0CVZrfmcOLBdX2UKGgGaAloD0MIZoNMMnKnZECUhpRSlGgVTegDaBZHQJVufkKeCkJ1fZQoaAZoCWgPQwjc8LvplhdFwJSGlFKUaBVNPwFoFkdAlXNcF6iTMnV9lChoBmgJaA9DCMeePZepmTpAlIaUUpRoFU0CAWgWR0CVjZJuEVWTdX2UKGgGaAloD0MIpOL/jqiOXECUhpRSlGgVTegDaBZHQJWRMS9M9KV1fZQoaAZoCWgPQwiV1t8SAElgQJSGlFKUaBVN6ANoFkdAlZRKOYIBzXV9lChoBmgJaA9DCCDsFKuGyGFAlIaUUpRoFU3oA2gWR0CVmBzlLeyidX2UKGgGaAloD0MIRBX+DO/rZECUhpRSlGgVTegDaBZHQJWZXV8Ti851fZQoaAZoCWgPQwiHiQYpeDJhQJSGlFKUaBVN6ANoFkdAlZzVyzXz2HV9lChoBmgJaA9DCMxG5/yUkmFAlIaUUpRoFU3oA2gWR0CVoQhgE2YOdX2UKGgGaAloD0MI83SuKCXeY0CUhpRSlGgVTegDaBZHQJWhG/O+qR51fZQoaAZoCWgPQwhYVpqUgk4XwJSGlFKUaBVNFgFoFkdAlaKdrftQbnV9lChoBmgJaA9DCHaMKy6OAmNAlIaUUpRoFU3oA2gWR0CVo3VIZqEfdX2UKGgGaAloD0MIqOSc2MOJYUCUhpRSlGgVTegDaBZHQJWpwGNaQmx1fZQoaAZoCWgPQwhmS1ZFuOkvQJSGlFKUaBVNGwFoFkdAlawvjKgZj3V9lChoBmgJaA9DCH16bMsANWZAlIaUUpRoFU3oA2gWR0CVrrAKfFrEdX2UKGgGaAloD0MIkNlZ9E6LW0CUhpRSlGgVTegDaBZHQJWxGCvovBd1fZQoaAZoCWgPQwhfB84Z0V1kQJSGlFKUaBVN6ANoFkdAlbpVLzwtrnV9lChoBmgJaA9DCOY/pN++BmFAlIaUUpRoFU3oA2gWR0CVwoaQV9F4dX2UKGgGaAloD0MI860P640GXkCUhpRSlGgVTegDaBZHQJXNdinYQJ51fZQoaAZoCWgPQwhhxD4BFBpgQJSGlFKUaBVN6ANoFkdAldKQTVUdaXV9lChoBmgJaA9DCPILryR5BF5AlIaUUpRoFU3oA2gWR0CV794ACGN8dX2UKGgGaAloD0MI4XoUrkdbWkCUhpRSlGgVTegDaBZHQJXyoI0IkZ91fZQoaAZoCWgPQwhYcaq1MEZhQJSGlFKUaBVN6ANoFkdAlfbyJTER8XV9lChoBmgJaA9DCIhodAexrGVAlIaUUpRoFU3oA2gWR0CV+iaTOgQIdX2UKGgGaAloD0MI68cm+ZE8YECUhpRSlGgVTegDaBZHQJX9/va11GN1fZQoaAZoCWgPQwhEatrFNChgQJSGlFKUaBVN6ANoFkdAlf4RFRYRunV9lChoBmgJaA9DCBdi9UcYImFAlIaUUpRoFU3oA2gWR0CV/2aNuLrHdX2UKGgGaAloD0MI1As+zckdYECUhpRSlGgVTegDaBZHQJYAIc6vJRx1fZQoaAZoCWgPQwhnutdJ/QpiQJSGlFKUaBVN6ANoFkdAlgUadlNDdHV9lChoBmgJaA9DCPjEOlW+Y1pAlIaUUpRoFU3oA2gWR0CWByEmY0EYdX2UKGgGaAloD0MI+YIWErBsYUCUhpRSlGgVTegDaBZHQJYJDuCwr2B1fZQoaAZoCWgPQwh6xyk6EhdkQJSGlFKUaBVN6ANoFkdAlgsIwmE5AHV9lChoBmgJaA9DCDJaR1UTB2FAlIaUUpRoFU3oA2gWR0CWEqHyVfNSdX2UKGgGaAloD0MIt5kK8Uh6QUCUhpRSlGgVS+xoFkdAlhL4ecQRPHV9lChoBmgJaA9DCJOpglHJsGNAlIaUUpRoFU3oA2gWR0CWGYvrGBFvdX2UKGgGaAloD0MIUyP0M/UuMECUhpRSlGgVTSwBaBZHQJYcDZHuqm11fZQoaAZoCWgPQwgqHEEqxdBiQJSGlFKUaBVN6ANoFkdAliLS4OMER3V9lChoBmgJaA9DCCWxpNx9/mVAlIaUUpRoFU3oA2gWR0CWJzm+TNdJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 152, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_tutorial.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81b29caae218d47acdd58edc7d695e4823db818c3109fde3a18ba5ad93b20180
3
+ size 147150
ppo_tutorial/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_tutorial/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa8e20559e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa8e2055a70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa8e2055b00>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa8e2055b90>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa8e2055c20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa8e2055cb0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa8e2055d40>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa8e2055dd0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa8e2055e60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa8e2055ef0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa8e2055f80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa8e20a1750>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1666632931128208647,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAL1Lm762Liq8uldSO/DiSTkYeIg9igr3uQAAgD8AAIA/TS8rPiiWibzJqQW67AkrOK6k+721gTM5AACAPwAAgD/tHVM+BKUDP5JwTb5yLH6+rOumvdgD5DkAAAAAAAAAAGbn0Lz2yBa602Wuu/wUUTgWYPC6CEgBOAAAgD8AAIA/zc4WPtfaSbvrJPM7TgH0txSPjLw9IYC6AACAPwAAgD8zx3697EmOuR2EP7bwc/E7ucxMOx1wWD0AAAAAAAAAAJph27sK1yS35BqBu9E677YwUGg6f0uXOgAAgD8AAIA/Wh/1PfYJPjsty2K9wgYXvN+lqjxCYgS9AACAPwAAgD8AJVE9XAMMuqY5rjreT381wug5uokgy7kAAIA/AACAP8DMV77dJBG9w84jO9er3jl69X0+IrxlugAAgD8AAIA/ABAhPa4lmrqOuGY7ALjFtY589TkeO4W6AACAPwAAgD+AnBK+cVUPu1d7x7jRFWK1rWtYPGP/6DcAAIA/AACAPzOQkz2uZYS6s2KzuynBNrO4X+e5rv9QMwAAgD8AAIA/FV+MvkwQTD7J5Rs++T41vo4gHD2b0zA9AAAAAAAAAABNQbk9XHMsuu5hiTtf9Kw1Y0qqO2GppzQAAIA/AACAP80sqLzDwRy6xo1ju4zFhbbHSce6yCKHOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIejTVk/lSYECUhpRSlIwBbJRN6AOMAXSUR0CUN6g8KXv6dX2UKGgGaAloD0MIdha9UwFQXkCUhpRSlGgVTegDaBZHQJQ41bD/EO11fZQoaAZoCWgPQwifPCzUmuteQJSGlFKUaBVN6ANoFkdAlDvks4DLbHV9lChoBmgJaA9DCP94r1oZ12JAlIaUUpRoFU3oA2gWR0CUPhQCSzPbdX2UKGgGaAloD0MIfJ4/bVSHLcCUhpRSlGgVS85oFkdAlENQ7PppvnV9lChoBmgJaA9DCANDVrd6zF1AlIaUUpRoFU3oA2gWR0CUR+siB5HFdX2UKGgGaAloD0MIw9SWOsioVUCUhpRSlGgVTegDaBZHQJRKO2x6fJ51fZQoaAZoCWgPQwj4cTRHVvxkQJSGlFKUaBVN6ANoFkdAlEr/AwfyPXV9lChoBmgJaA9DCABTBg5og11AlIaUUpRoFU3oA2gWR0CUULSzPa+OdX2UKGgGaAloD0MIWJBmLJpUZECUhpRSlGgVTegDaBZHQJRSInQY1pF1fZQoaAZoCWgPQwicielCrPVeQJSGlFKUaBVN6ANoFkdAlGLEVBUrCnV9lChoBmgJaA9DCAoS292DImVAlIaUUpRoFU3oA2gWR0CUf3AO8TSLdX2UKGgGaAloD0MI9kArMOQOZkCUhpRSlGgVTegDaBZHQJSD7ocJdB11fZQoaAZoCWgPQwiJ8C+CxllfQJSGlFKUaBVN6ANoFkdAlISgflp48nV9lChoBmgJaA9DCPlNYaWCxF1AlIaUUpRoFU3oA2gWR0CUh0EZzgdfdX2UKGgGaAloD0MIri6nBERsYUCUhpRSlGgVTegDaBZHQJSKMRlHz6J1fZQoaAZoCWgPQwgyHxDozJBgQJSGlFKUaBVN6ANoFkdAlIsfoePq93V9lChoBmgJaA9DCDHtm/urv2BAlIaUUpRoFU3oA2gWR0CUjdOavzOHdX2UKGgGaAloD0MIw7ZFmQ1jY0CUhpRSlGgVTegDaBZHQJSRC6I3zc11fZQoaAZoCWgPQwgIkncOZVZbQJSGlFKUaBVN6ANoFkdAlJLyPIXCTHV9lChoBmgJaA9DCDYiGAcXKmNAlIaUUpRoFU3oA2gWR0CUl99deIEbdX2UKGgGaAloD0MIlE+PbRkrZkCUhpRSlGgVTegDaBZHQJScCp5u63B1fZQoaAZoCWgPQwj7Bbth285ZQJSGlFKUaBVN6ANoFkdAlJ4pGe+VT3V9lChoBmgJaA9DCH6pnzcVLVxAlIaUUpRoFU3oA2gWR0CUnu5ftx+8dX2UKGgGaAloD0MI4h5LH7rwXECUhpRSlGgVTegDaBZHQJSk31ct5D91fZQoaAZoCWgPQwgw9IjRc49iQJSGlFKUaBVN6ANoFkdAlKZV4oqkM3V9lChoBmgJaA9DCI0OSMI+CGZAlIaUUpRoFU3oA2gWR0CUt3lz2exwdX2UKGgGaAloD0MInQ35Z4bmYECUhpRSlGgVTegDaBZHQJTUoQNCqp91fZQoaAZoCWgPQwgRGOsbGJ9lQJSGlFKUaBVN6ANoFkdAlNmF5WzWw3V9lChoBmgJaA9DCCHLgok/C2JAlIaUUpRoFU3oA2gWR0CU2k+oLofTdX2UKGgGaAloD0MI5Nak25KFYUCUhpRSlGgVTegDaBZHQJTdWAPNFBp1fZQoaAZoCWgPQwhKRWPtb4dhQJSGlFKUaBVN6ANoFkdAlODcvduYQnV9lChoBmgJaA9DCA8J3/sbzl9AlIaUUpRoFU3oA2gWR0CU4fj7hvR7dX2UKGgGaAloD0MI1PNuLCh2XUCUhpRSlGgVTegDaBZHQJTlBUbT+eh1fZQoaAZoCWgPQwgvGFxzRx8uQJSGlFKUaBVNGAFoFkdAlOjOkpI+XHV9lChoBmgJaA9DCFJ95xclCGJAlIaUUpRoFU3oA2gWR0CU6N55JK8MdX2UKGgGaAloD0MIIqXZPA5aXECUhpRSlGgVTegDaBZHQJTrCRYA80V1fZQoaAZoCWgPQwjxm8JKhTlgQJSGlFKUaBVN6ANoFkdAlPC+glF+eHV9lChoBmgJaA9DCCGunL0zOg9AlIaUUpRoFU2HAWgWR0CU85x8D0UXdX2UKGgGaAloD0MISDfCoqIVYkCUhpRSlGgVTegDaBZHQJT1VrFfiP11fZQoaAZoCWgPQwipFabvNUJeQJSGlFKUaBVN6ANoFkdAlPekauOjqXV9lChoBmgJaA9DCJf/kH57LmdAlIaUUpRoFU3oA2gWR0CU+HJ+DvmYdX2UKGgGaAloD0MI0Jfe/twYZkCUhpRSlGgVTegDaBZHQJT+zWrfcet1fZQoaAZoCWgPQwjGaYgq/CxeQJSGlFKUaBVN6ANoFkdAlQBc+3YthHV9lChoBmgJaA9DCJjD7juGhyNAlIaUUpRoFUvzaBZHQJUJmgwoLG91fZQoaAZoCWgPQwijWG5pNUdbQJSGlFKUaBVN6ANoFkdAlRHx6Ww/xHV9lChoBmgJaA9DCKQ5svLLC11AlIaUUpRoFU3oA2gWR0CVNXbyH2ytdX2UKGgGaAloD0MIY15HHDJ/Y0CUhpRSlGgVTegDaBZHQJU46GSIP9V1fZQoaAZoCWgPQwgjg9xFGBNkQJSGlFKUaBVN6ANoFkdAlTzncxj8UHV9lChoBmgJaA9DCDcz+tFwWWNAlIaUUpRoFU3oA2gWR0CVPi3evZAZdX2UKGgGaAloD0MIq5Se6aXuYECUhpRSlGgVTegDaBZHQJVB2MsH0K91fZQoaAZoCWgPQwgVyOwsem9fQJSGlFKUaBVN6ANoFkdAlUYtD2Jzk3V9lChoBmgJaA9DCAyVfy2vq2NAlIaUUpRoFU3oA2gWR0CVRj7cO9WZdX2UKGgGaAloD0MI+I2vPbPEX0CUhpRSlGgVTegDaBZHQJVIalO45Lh1fZQoaAZoCWgPQwhq9kArsBBlQJSGlFKUaBVN6ANoFkdAlU4FclgMMXV9lChoBmgJaA9DCHNp/MKrbGNAlIaUUpRoFU3oA2gWR0CVUKUGFBY3dX2UKGgGaAloD0MIV3vYC4XNZUCUhpRSlGgVTegDaBZHQJVSPECNjsl1fZQoaAZoCWgPQwiIvruVpaFhQJSGlFKUaBVN6ANoFkdAlVRQ/X5FgHV9lChoBmgJaA9DCB9N9WT+JGRAlIaUUpRoFU3oA2gWR0CVW25gPVd5dX2UKGgGaAloD0MIxJj099KRYkCUhpRSlGgVTegDaBZHQJVc88uBczJ1fZQoaAZoCWgPQwgAAWvVrrElQJSGlFKUaBVNIQFoFkdAlWSWplz2e3V9lChoBmgJaA9DCJ7OFaUEQWRAlIaUUpRoFU3oA2gWR0CVZrfmcOLBdX2UKGgGaAloD0MIZoNMMnKnZECUhpRSlGgVTegDaBZHQJVufkKeCkJ1fZQoaAZoCWgPQwjc8LvplhdFwJSGlFKUaBVNPwFoFkdAlXNcF6iTMnV9lChoBmgJaA9DCMeePZepmTpAlIaUUpRoFU0CAWgWR0CVjZJuEVWTdX2UKGgGaAloD0MIpOL/jqiOXECUhpRSlGgVTegDaBZHQJWRMS9M9KV1fZQoaAZoCWgPQwiV1t8SAElgQJSGlFKUaBVN6ANoFkdAlZRKOYIBzXV9lChoBmgJaA9DCCDsFKuGyGFAlIaUUpRoFU3oA2gWR0CVmBzlLeyidX2UKGgGaAloD0MIRBX+DO/rZECUhpRSlGgVTegDaBZHQJWZXV8Ti851fZQoaAZoCWgPQwiHiQYpeDJhQJSGlFKUaBVN6ANoFkdAlZzVyzXz2HV9lChoBmgJaA9DCMxG5/yUkmFAlIaUUpRoFU3oA2gWR0CVoQhgE2YOdX2UKGgGaAloD0MI83SuKCXeY0CUhpRSlGgVTegDaBZHQJWhG/O+qR51fZQoaAZoCWgPQwhYVpqUgk4XwJSGlFKUaBVNFgFoFkdAlaKdrftQbnV9lChoBmgJaA9DCHaMKy6OAmNAlIaUUpRoFU3oA2gWR0CVo3VIZqEfdX2UKGgGaAloD0MIqOSc2MOJYUCUhpRSlGgVTegDaBZHQJWpwGNaQmx1fZQoaAZoCWgPQwhmS1ZFuOkvQJSGlFKUaBVNGwFoFkdAlawvjKgZj3V9lChoBmgJaA9DCH16bMsANWZAlIaUUpRoFU3oA2gWR0CVrrAKfFrEdX2UKGgGaAloD0MIkNlZ9E6LW0CUhpRSlGgVTegDaBZHQJWxGCvovBd1fZQoaAZoCWgPQwhfB84Z0V1kQJSGlFKUaBVN6ANoFkdAlbpVLzwtrnV9lChoBmgJaA9DCOY/pN++BmFAlIaUUpRoFU3oA2gWR0CVwoaQV9F4dX2UKGgGaAloD0MI860P640GXkCUhpRSlGgVTegDaBZHQJXNdinYQJ51fZQoaAZoCWgPQwhhxD4BFBpgQJSGlFKUaBVN6ANoFkdAldKQTVUdaXV9lChoBmgJaA9DCPILryR5BF5AlIaUUpRoFU3oA2gWR0CV794ACGN8dX2UKGgGaAloD0MI4XoUrkdbWkCUhpRSlGgVTegDaBZHQJXyoI0IkZ91fZQoaAZoCWgPQwhYcaq1MEZhQJSGlFKUaBVN6ANoFkdAlfbyJTER8XV9lChoBmgJaA9DCIhodAexrGVAlIaUUpRoFU3oA2gWR0CV+iaTOgQIdX2UKGgGaAloD0MI68cm+ZE8YECUhpRSlGgVTegDaBZHQJX9/va11GN1fZQoaAZoCWgPQwhEatrFNChgQJSGlFKUaBVN6ANoFkdAlf4RFRYRunV9lChoBmgJaA9DCBdi9UcYImFAlIaUUpRoFU3oA2gWR0CV/2aNuLrHdX2UKGgGaAloD0MI1As+zckdYECUhpRSlGgVTegDaBZHQJYAIc6vJRx1fZQoaAZoCWgPQwhnutdJ/QpiQJSGlFKUaBVN6ANoFkdAlgUadlNDdHV9lChoBmgJaA9DCPjEOlW+Y1pAlIaUUpRoFU3oA2gWR0CWByEmY0EYdX2UKGgGaAloD0MI+YIWErBsYUCUhpRSlGgVTegDaBZHQJYJDuCwr2B1fZQoaAZoCWgPQwh6xyk6EhdkQJSGlFKUaBVN6ANoFkdAlgsIwmE5AHV9lChoBmgJaA9DCDJaR1UTB2FAlIaUUpRoFU3oA2gWR0CWEqHyVfNSdX2UKGgGaAloD0MIt5kK8Uh6QUCUhpRSlGgVS+xoFkdAlhL4ecQRPHV9lChoBmgJaA9DCJOpglHJsGNAlIaUUpRoFU3oA2gWR0CWGYvrGBFvdX2UKGgGaAloD0MIUyP0M/UuMECUhpRSlGgVTSwBaBZHQJYcDZHuqm11fZQoaAZoCWgPQwgqHEEqxdBiQJSGlFKUaBVN6ANoFkdAliLS4OMER3V9lChoBmgJaA9DCCWxpNx9/mVAlIaUUpRoFU3oA2gWR0CWJzm+TNdJdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 152,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_tutorial/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c5d5b35db5ace70918131ca54d39bd4ecf37f735dbc0871788ca02c60f4ab39
3
+ size 87865
ppo_tutorial/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2388bbb239aff18d7ec89fe23745e7477249999fc1e9601d0a70b96b2de415c1
3
+ size 43201
ppo_tutorial/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_tutorial/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (243 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 192.47249810104069, "std_reward": 76.19445227784685, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-24T17:49:11.139355"}