dsfdsf2 commited on
Commit
c706506
1 Parent(s): adbabbb

Training complete

Browse files
Files changed (1) hide show
  1. README.md +54 -18
README.md CHANGED
@@ -2,22 +2,53 @@
2
  license: apache-2.0
3
  base_model: bert-base-cased
4
  tags:
5
- - generated_from_keras_callback
 
 
 
 
 
 
 
6
  model-index:
7
- - name: dsfdsf2/bert-finetuned-ner
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
12
- probably proofread and complete it, then remove this comment. -->
13
 
14
- # dsfdsf2/bert-finetuned-ner
15
 
16
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Train Loss: 0.0268
19
- - Validation Loss: 0.0516
20
- - Epoch: 2
 
 
21
 
22
  ## Model description
23
 
@@ -36,21 +67,26 @@ More information needed
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
40
- - training_precision: mixed_float16
 
 
 
 
 
41
 
42
  ### Training results
43
 
44
- | Train Loss | Validation Loss | Epoch |
45
- |:----------:|:---------------:|:-----:|
46
- | 0.1686 | 0.0600 | 0 |
47
- | 0.0455 | 0.0551 | 1 |
48
- | 0.0268 | 0.0516 | 2 |
49
 
50
 
51
  ### Framework versions
52
 
53
  - Transformers 4.40.2
54
- - TensorFlow 2.15.0
55
  - Datasets 2.19.1
56
  - Tokenizers 0.19.1
 
2
  license: apache-2.0
3
  base_model: bert-base-cased
4
  tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
+ - name: bert-finetuned-ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9325954072360813
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9500168293503871
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9412255106294289
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9864308000235474
38
  ---
39
 
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
 
43
+ # bert-finetuned-ner
44
 
45
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0618
48
+ - Precision: 0.9326
49
+ - Recall: 0.9500
50
+ - F1: 0.9412
51
+ - Accuracy: 0.9864
52
 
53
  ## Model description
54
 
 
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.0739 | 1.0 | 1756 | 0.0703 | 0.8939 | 0.9275 | 0.9104 | 0.9800 |
83
+ | 0.0365 | 2.0 | 3512 | 0.0627 | 0.9299 | 0.9468 | 0.9383 | 0.9857 |
84
+ | 0.022 | 3.0 | 5268 | 0.0618 | 0.9326 | 0.9500 | 0.9412 | 0.9864 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.40.2
90
+ - Pytorch 2.2.1+cu121
91
  - Datasets 2.19.1
92
  - Tokenizers 0.19.1