File size: 2,486 Bytes
8788e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11cce76
 
 
 
 
 
 
8788e37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
617d842
11cce76
8788e37
 
 
 
8fe776f
 
8788e37
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: dsfdsf2/distilbert-base-uncased-finetuned-squad
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# dsfdsf2/distilbert-base-uncased-finetuned-squad

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.9640
- Train End Logits Accuracy: 0.7317
- Train Start Logits Accuracy: 0.6920
- Validation Loss: 1.1190
- Validation End Logits Accuracy: 0.6979
- Validation Start Logits Accuracy: 0.6640
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.4963     | 0.6099                    | 0.5713                      | 1.1677          | 0.6843                         | 0.6492                           | 0     |
| 0.9640     | 0.7317                    | 0.6920                      | 1.1190          | 0.6979                         | 0.6640                           | 1     |


### Framework versions

- Transformers 4.40.1
- TensorFlow 2.16.1
- Datasets 2.19.0
- Tokenizers 0.19.1