--- license: apache-2.0 base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ tags: - generated_from_trainer model-index: - name: healphy-GPT results: [] library_name: peft --- # healphy-GPT This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.GPTQ - bits: 4 - tokenizer: None - dataset: None - group_size: 128 - damp_percent: 0.1 - desc_act: True - sym: True - true_sequential: True - use_cuda_fp16: False - model_seqlen: None - block_name_to_quantize: None - module_name_preceding_first_block: None - batch_size: 1 - pad_token_id: None - use_exllama: True - max_input_length: None - exllama_config: {'version': } - cache_block_outputs: True - modules_in_block_to_quantize: None ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7738 | 0.98 | 31 | 1.4461 | | 1.2438 | 1.98 | 63 | 1.2734 | | 1.1119 | 2.99 | 95 | 1.1583 | | 0.9848 | 4.0 | 127 | 1.0587 | | 0.9112 | 4.98 | 158 | 0.9546 | | 0.7821 | 5.98 | 190 | 0.8569 | | 0.6926 | 6.99 | 222 | 0.7727 | | 0.623 | 8.0 | 254 | 0.7120 | | 0.5934 | 8.98 | 285 | 0.6737 | | 0.5381 | 9.76 | 310 | 0.6624 | ### Framework versions - PEFT 0.5.0 - Transformers 4.38.2 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.15.2