--- library_name: transformers license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta_textclassification results: [] --- # deberta_textclassification This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3436 - Accuracy: 0.9520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3919 | 0.2924 | 500 | 0.2821 | 0.9184 | | 0.274 | 0.5848 | 1000 | 0.2795 | 0.9362 | | 0.2552 | 0.8772 | 1500 | 0.2469 | 0.9355 | | 0.2148 | 1.1696 | 2000 | 0.3214 | 0.9421 | | 0.1876 | 1.4620 | 2500 | 0.2636 | 0.9382 | | 0.1505 | 1.7544 | 3000 | 0.2323 | 0.9467 | | 0.1411 | 2.0468 | 3500 | 0.3445 | 0.9395 | | 0.0676 | 2.3392 | 4000 | 0.3280 | 0.9414 | | 0.1089 | 2.6316 | 4500 | 0.4225 | 0.9270 | | 0.0888 | 2.9240 | 5000 | 0.2458 | 0.9520 | | 0.0544 | 3.2164 | 5500 | 0.2877 | 0.9539 | | 0.0366 | 3.5088 | 6000 | 0.3010 | 0.9553 | | 0.0322 | 3.8012 | 6500 | 0.3508 | 0.9474 | | 0.0313 | 4.0936 | 7000 | 0.3302 | 0.9520 | | 0.0191 | 4.3860 | 7500 | 0.3527 | 0.9493 | | 0.0118 | 4.6784 | 8000 | 0.3378 | 0.9513 | | 0.0189 | 4.9708 | 8500 | 0.3436 | 0.9520 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.4.0 - Tokenizers 0.19.1