--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - Saul-Instruct-v1 --- Quantizations of https://huggingface.co/Equall/Saul-Instruct-v1 # From original readme ## Uses You can use it for legal use cases that involves generation. Here's how you can run the model using the pipeline() function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="Equall/Saul-Instruct-v1", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "user", "content": "[YOUR QUERY GOES HERE]"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=False) print(outputs[0]["generated_text"]) ```