--- license: other library_name: peft tags: - generated_from_trainer base_model: google/gemma-2b-it model-index: - name: peft-gemma2b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # use google/gemma-7b if you have access base_model: google/gemma-2b-it model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: ./python-oasst/combined_chunk_2.jsonl type: oasst val_set_size: 0.40 output_dir: ./out3 adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true sequence_len: 4096 sample_packing: true pad_to_sequence_len: true wandb_project: gemma-2b-it wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 3 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: true group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 256 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# out3 This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 3 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8926 | 0.02 | 1 | 2.7617 | | 1.4502 | 0.26 | 12 | 1.4564 | | 1.7617 | 0.52 | 24 | 1.3147 | | 1.2051 | 0.78 | 36 | 1.2781 | | 1.1353 | 1.01 | 48 | 1.2603 | | 1.1787 | 1.28 | 60 | 1.2498 | | 1.1416 | 1.54 | 72 | 1.2445 | | 1.1606 | 1.8 | 84 | 1.2430 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.15.0