File size: 1,975 Bytes
6ec14ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: openai/whisper-large-v2
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: whisper-large-v2-ft-cv16-1__car200-e3n4-A50E100_owner12-copy2x-241217-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v2-ft-cv16-1__car200-e3n4-A50E100_owner12-copy2x-241217-v1

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1109

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7195        | 1.0   | 149  | 1.4206          |
| 0.3691        | 2.0   | 298  | 0.1129          |
| 0.1193        | 3.0   | 447  | 0.1035          |
| 0.0939        | 4.0   | 596  | 0.0994          |
| 0.0769        | 5.0   | 745  | 0.1003          |
| 0.0634        | 6.0   | 894  | 0.1031          |
| 0.053         | 7.0   | 1043 | 0.1054          |
| 0.0455        | 8.0   | 1192 | 0.1077          |
| 0.0402        | 9.0   | 1341 | 0.1098          |
| 0.0365        | 10.0  | 1490 | 0.1109          |


### Framework versions

- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.0