--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - nyansapo_ai-asr-leaderboard - generated_from_trainer datasets: - NyansapoAI/azure-dataset metrics: - wer model-index: - name: whisper-base.en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Azure-dataset type: NyansapoAI/azure-dataset config: default split: test args: 'split: test' metrics: - name: Wer type: wer value: 8.585858585858585 --- # whisper-base.en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Azure-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0237 - Wer: 8.5859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1945 | 3.11 | 500 | 0.0626 | 18.0808 | | 0.0627 | 6.21 | 1000 | 0.0292 | 10.5051 | | 0.0419 | 9.32 | 1500 | 0.0242 | 9.0909 | | 0.0419 | 12.42 | 2000 | 0.0242 | 8.8889 | | 0.0502 | 15.53 | 2500 | 0.0237 | 8.5859 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3