Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,41 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- ro
|
6 |
+
- de
|
7 |
+
datasets:
|
8 |
+
- c4
|
9 |
+
tags:
|
10 |
+
- summarization
|
11 |
+
- translation
|
12 |
+
|
13 |
license: apache-2.0
|
14 |
---
|
15 |
+
|
16 |
+
## [t5-small](https://huggingface.co/t5-small) exported to the ONNX format
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#t5) is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format.
|
21 |
+
|
22 |
+
For more information, please take a look at the original paper.
|
23 |
+
|
24 |
+
Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)
|
25 |
+
|
26 |
+
Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*
|
27 |
+
|
28 |
+
|
29 |
+
## Usage example
|
30 |
+
|
31 |
+
You can use this model with Transformers *pipeline*.
|
32 |
+
|
33 |
+
```python
|
34 |
+
from transformers import AutoTokenizer, pipeline
|
35 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small")
|
37 |
+
model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
|
38 |
+
translator = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer)
|
39 |
+
results = translator("My name is Eustache and I have a pet raccoon")
|
40 |
+
print(results)
|
41 |
+
```
|