echodrift commited on
Commit
c917429
·
verified ·
1 Parent(s): 514c4d5

Model save

Browse files
Files changed (1) hide show
  1. README.md +169 -48
README.md CHANGED
@@ -6,19 +6,19 @@ tags:
6
  metrics:
7
  - f1
8
  model-index:
9
- - name: terminator_finetune
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # terminator_finetune
17
 
18
  This model is a fine-tuned version of [echodrift/terminator](https://huggingface.co/echodrift/terminator) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 4.3450
21
- - F1: 0.4817
22
 
23
  ## Model description
24
 
@@ -49,50 +49,171 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | F1 |
51
  |:-------------:|:-------:|:----:|:---------------:|:------:|
52
- | No log | 0.9091 | 60 | 1.0333 | 0.4571 |
53
- | No log | 1.8182 | 120 | 1.0937 | 0.4575 |
54
- | No log | 2.7273 | 180 | 1.4988 | 0.4340 |
55
- | No log | 3.6364 | 240 | 1.8738 | 0.4582 |
56
- | No log | 4.5455 | 300 | 2.7333 | 0.4141 |
57
- | No log | 5.4545 | 360 | 3.1445 | 0.4468 |
58
- | No log | 6.3636 | 420 | 3.2106 | 0.5097 |
59
- | No log | 7.2727 | 480 | 3.3219 | 0.4878 |
60
- | 0.3564 | 8.1818 | 540 | 4.1566 | 0.4493 |
61
- | 0.3564 | 9.0909 | 600 | 3.5661 | 0.4938 |
62
- | 0.3564 | 10.0 | 660 | 3.5243 | 0.5015 |
63
- | 0.3564 | 10.9091 | 720 | 3.7514 | 0.5057 |
64
- | 0.3564 | 11.8182 | 780 | 4.0015 | 0.4608 |
65
- | 0.3564 | 12.7273 | 840 | 4.4677 | 0.4278 |
66
- | 0.3564 | 13.6364 | 900 | 4.0757 | 0.4677 |
67
- | 0.3564 | 14.5455 | 960 | 4.4461 | 0.4501 |
68
- | 0.0105 | 15.4545 | 1020 | 4.1675 | 0.4820 |
69
- | 0.0105 | 16.3636 | 1080 | 4.2034 | 0.4752 |
70
- | 0.0105 | 17.2727 | 1140 | 4.2144 | 0.4820 |
71
- | 0.0105 | 18.1818 | 1200 | 4.2162 | 0.4871 |
72
- | 0.0105 | 19.0909 | 1260 | 4.0772 | 0.4972 |
73
- | 0.0105 | 20.0 | 1320 | 4.3442 | 0.4733 |
74
- | 0.0105 | 20.9091 | 1380 | 4.2116 | 0.4912 |
75
- | 0.0105 | 21.8182 | 1440 | 4.1968 | 0.4860 |
76
- | 0.0008 | 22.7273 | 1500 | 4.2478 | 0.4855 |
77
- | 0.0008 | 23.6364 | 1560 | 4.3012 | 0.5041 |
78
- | 0.0008 | 24.5455 | 1620 | 4.6983 | 0.4779 |
79
- | 0.0008 | 25.4545 | 1680 | 4.1226 | 0.5194 |
80
- | 0.0008 | 26.3636 | 1740 | 4.1304 | 0.5282 |
81
- | 0.0008 | 27.2727 | 1800 | 4.1460 | 0.5250 |
82
- | 0.0008 | 28.1818 | 1860 | 4.1624 | 0.5271 |
83
- | 0.0008 | 29.0909 | 1920 | 4.1758 | 0.5210 |
84
- | 0.0008 | 30.0 | 1980 | 4.1815 | 0.5210 |
85
- | 0.0005 | 30.9091 | 2040 | 4.1975 | 0.5154 |
86
- | 0.0005 | 31.8182 | 2100 | 4.2007 | 0.5154 |
87
- | 0.0005 | 32.7273 | 2160 | 4.2079 | 0.5160 |
88
- | 0.0005 | 33.6364 | 2220 | 4.3222 | 0.4817 |
89
- | 0.0005 | 34.5455 | 2280 | 4.3393 | 0.4817 |
90
- | 0.0005 | 35.4545 | 2340 | 4.3413 | 0.4817 |
91
- | 0.0005 | 36.3636 | 2400 | 4.3432 | 0.4817 |
92
- | 0.0005 | 37.2727 | 2460 | 4.3440 | 0.4817 |
93
- | 0.0001 | 38.1818 | 2520 | 4.3442 | 0.4817 |
94
- | 0.0001 | 39.0909 | 2580 | 4.3442 | 0.4817 |
95
- | 0.0001 | 40.0 | 2640 | 4.3450 | 0.4817 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
 
98
  ### Framework versions
 
6
  metrics:
7
  - f1
8
  model-index:
9
+ - name: terminator_finetune_augment
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # terminator_finetune_augment
17
 
18
  This model is a fine-tuned version of [echodrift/terminator](https://huggingface.co/echodrift/terminator) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.0000
21
+ - F1: 1.0
22
 
23
  ## Model description
24
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | F1 |
51
  |:-------------:|:-------:|:----:|:---------------:|:------:|
52
+ | No log | 0.2419 | 60 | 0.8871 | 0.5852 |
53
+ | No log | 0.4839 | 120 | 0.7329 | 0.6617 |
54
+ | No log | 0.7258 | 180 | 0.4677 | 0.8161 |
55
+ | No log | 0.9677 | 240 | 0.4432 | 0.8588 |
56
+ | No log | 1.2097 | 300 | 0.5409 | 0.8094 |
57
+ | No log | 1.4516 | 360 | 0.5100 | 0.8382 |
58
+ | No log | 1.6935 | 420 | 0.3777 | 0.8506 |
59
+ | No log | 1.9355 | 480 | 0.3097 | 0.9060 |
60
+ | 0.3881 | 2.1774 | 540 | 0.1960 | 0.9331 |
61
+ | 0.3881 | 2.4194 | 600 | 0.1590 | 0.9535 |
62
+ | 0.3881 | 2.6613 | 660 | 0.1501 | 0.9534 |
63
+ | 0.3881 | 2.9032 | 720 | 0.0795 | 0.9800 |
64
+ | 0.3881 | 3.1452 | 780 | 0.0098 | 0.9932 |
65
+ | 0.3881 | 3.3871 | 840 | 0.0280 | 0.9932 |
66
+ | 0.3881 | 3.6290 | 900 | 0.0486 | 0.9805 |
67
+ | 0.3881 | 3.8710 | 960 | 0.0828 | 0.9804 |
68
+ | 0.083 | 4.1129 | 1020 | 0.0529 | 0.9804 |
69
+ | 0.083 | 4.3548 | 1080 | 0.0424 | 0.9931 |
70
+ | 0.083 | 4.5968 | 1140 | 0.0204 | 0.9931 |
71
+ | 0.083 | 4.8387 | 1200 | 0.0169 | 0.9873 |
72
+ | 0.083 | 5.0806 | 1260 | 0.0008 | 1.0 |
73
+ | 0.083 | 5.3226 | 1320 | 0.0266 | 0.9863 |
74
+ | 0.083 | 5.5645 | 1380 | 0.0020 | 1.0 |
75
+ | 0.083 | 5.8065 | 1440 | 0.0001 | 1.0 |
76
+ | 0.0341 | 6.0484 | 1500 | 0.0052 | 0.9931 |
77
+ | 0.0341 | 6.2903 | 1560 | 0.0014 | 1.0 |
78
+ | 0.0341 | 6.5323 | 1620 | 0.0036 | 1.0 |
79
+ | 0.0341 | 6.7742 | 1680 | 0.0037 | 1.0 |
80
+ | 0.0341 | 7.0161 | 1740 | 0.0002 | 1.0 |
81
+ | 0.0341 | 7.2581 | 1800 | 0.0130 | 0.9932 |
82
+ | 0.0341 | 7.5 | 1860 | 0.0001 | 1.0 |
83
+ | 0.0341 | 7.7419 | 1920 | 0.0001 | 1.0 |
84
+ | 0.0341 | 7.9839 | 1980 | 0.0001 | 1.0 |
85
+ | 0.017 | 8.2258 | 2040 | 0.0001 | 1.0 |
86
+ | 0.017 | 8.4677 | 2100 | 0.0010 | 1.0 |
87
+ | 0.017 | 8.7097 | 2160 | 0.0096 | 0.9937 |
88
+ | 0.017 | 8.9516 | 2220 | 0.0824 | 0.9661 |
89
+ | 0.017 | 9.1935 | 2280 | 0.0009 | 1.0 |
90
+ | 0.017 | 9.4355 | 2340 | 0.0017 | 1.0 |
91
+ | 0.017 | 9.6774 | 2400 | 0.0004 | 1.0 |
92
+ | 0.017 | 9.9194 | 2460 | 0.0258 | 0.9868 |
93
+ | 0.0278 | 10.1613 | 2520 | 0.0279 | 0.9931 |
94
+ | 0.0278 | 10.4032 | 2580 | 0.0551 | 0.9931 |
95
+ | 0.0278 | 10.6452 | 2640 | 0.0001 | 1.0 |
96
+ | 0.0278 | 10.8871 | 2700 | 0.0314 | 0.9936 |
97
+ | 0.0278 | 11.1290 | 2760 | 0.0349 | 0.9931 |
98
+ | 0.0278 | 11.3710 | 2820 | 0.0057 | 0.9931 |
99
+ | 0.0278 | 11.6129 | 2880 | 0.0446 | 0.9931 |
100
+ | 0.0278 | 11.8548 | 2940 | 0.0001 | 1.0 |
101
+ | 0.0099 | 12.0968 | 3000 | 0.0965 | 0.9867 |
102
+ | 0.0099 | 12.3387 | 3060 | 0.0637 | 0.9937 |
103
+ | 0.0099 | 12.5806 | 3120 | 0.0884 | 0.9867 |
104
+ | 0.0099 | 12.8226 | 3180 | 0.0737 | 0.9931 |
105
+ | 0.0099 | 13.0645 | 3240 | 0.0748 | 0.9931 |
106
+ | 0.0099 | 13.3065 | 3300 | 0.0748 | 0.9931 |
107
+ | 0.0099 | 13.5484 | 3360 | 0.0000 | 1.0 |
108
+ | 0.0099 | 13.7903 | 3420 | 0.0000 | 1.0 |
109
+ | 0.0099 | 14.0323 | 3480 | 0.1598 | 0.9660 |
110
+ | 0.0169 | 14.2742 | 3540 | 0.0006 | 1.0 |
111
+ | 0.0169 | 14.5161 | 3600 | 0.0001 | 1.0 |
112
+ | 0.0169 | 14.7581 | 3660 | 0.0002 | 1.0 |
113
+ | 0.0169 | 15.0 | 3720 | 0.0005 | 1.0 |
114
+ | 0.0169 | 15.2419 | 3780 | 0.0000 | 1.0 |
115
+ | 0.0169 | 15.4839 | 3840 | 0.0000 | 1.0 |
116
+ | 0.0169 | 15.7258 | 3900 | 0.0002 | 1.0 |
117
+ | 0.0169 | 15.9677 | 3960 | 0.0015 | 1.0 |
118
+ | 0.0155 | 16.2097 | 4020 | 0.0000 | 1.0 |
119
+ | 0.0155 | 16.4516 | 4080 | 0.0000 | 1.0 |
120
+ | 0.0155 | 16.6935 | 4140 | 0.0019 | 1.0 |
121
+ | 0.0155 | 16.9355 | 4200 | 0.0574 | 0.9931 |
122
+ | 0.0155 | 17.1774 | 4260 | 0.0570 | 0.9931 |
123
+ | 0.0155 | 17.4194 | 4320 | 0.0566 | 0.9931 |
124
+ | 0.0155 | 17.6613 | 4380 | 0.0002 | 1.0 |
125
+ | 0.0155 | 17.9032 | 4440 | 0.0001 | 1.0 |
126
+ | 0.0214 | 18.1452 | 4500 | 0.0001 | 1.0 |
127
+ | 0.0214 | 18.3871 | 4560 | 0.0001 | 1.0 |
128
+ | 0.0214 | 18.6290 | 4620 | 0.0064 | 0.9937 |
129
+ | 0.0214 | 18.8710 | 4680 | 0.0724 | 0.9936 |
130
+ | 0.0214 | 19.1129 | 4740 | 0.0000 | 1.0 |
131
+ | 0.0214 | 19.3548 | 4800 | 0.0001 | 1.0 |
132
+ | 0.0214 | 19.5968 | 4860 | 0.0001 | 1.0 |
133
+ | 0.0214 | 19.8387 | 4920 | 0.0002 | 1.0 |
134
+ | 0.0214 | 20.0806 | 4980 | 0.0003 | 1.0 |
135
+ | 0.0161 | 20.3226 | 5040 | 0.0003 | 1.0 |
136
+ | 0.0161 | 20.5645 | 5100 | 0.0000 | 1.0 |
137
+ | 0.0161 | 20.8065 | 5160 | 0.0000 | 1.0 |
138
+ | 0.0161 | 21.0484 | 5220 | 0.0000 | 1.0 |
139
+ | 0.0161 | 21.2903 | 5280 | 0.0000 | 1.0 |
140
+ | 0.0161 | 21.5323 | 5340 | 0.0000 | 1.0 |
141
+ | 0.0161 | 21.7742 | 5400 | 0.0000 | 1.0 |
142
+ | 0.0161 | 22.0161 | 5460 | 0.0000 | 1.0 |
143
+ | 0.004 | 22.2581 | 5520 | 0.0000 | 1.0 |
144
+ | 0.004 | 22.5 | 5580 | 0.0000 | 1.0 |
145
+ | 0.004 | 22.7419 | 5640 | 0.0000 | 1.0 |
146
+ | 0.004 | 22.9839 | 5700 | 0.0000 | 1.0 |
147
+ | 0.004 | 23.2258 | 5760 | 0.0000 | 1.0 |
148
+ | 0.004 | 23.4677 | 5820 | 0.0000 | 1.0 |
149
+ | 0.004 | 23.7097 | 5880 | 0.0000 | 1.0 |
150
+ | 0.004 | 23.9516 | 5940 | 0.0000 | 1.0 |
151
+ | 0.0026 | 24.1935 | 6000 | 0.0000 | 1.0 |
152
+ | 0.0026 | 24.4355 | 6060 | 0.0000 | 1.0 |
153
+ | 0.0026 | 24.6774 | 6120 | 0.0000 | 1.0 |
154
+ | 0.0026 | 24.9194 | 6180 | 0.0000 | 1.0 |
155
+ | 0.0026 | 25.1613 | 6240 | 0.0000 | 1.0 |
156
+ | 0.0026 | 25.4032 | 6300 | 0.0000 | 1.0 |
157
+ | 0.0026 | 25.6452 | 6360 | 0.0000 | 1.0 |
158
+ | 0.0026 | 25.8871 | 6420 | 0.0000 | 1.0 |
159
+ | 0.0026 | 26.1290 | 6480 | 0.0000 | 1.0 |
160
+ | 0.0009 | 26.3710 | 6540 | 0.0000 | 1.0 |
161
+ | 0.0009 | 26.6129 | 6600 | 0.0000 | 1.0 |
162
+ | 0.0009 | 26.8548 | 6660 | 0.0000 | 1.0 |
163
+ | 0.0009 | 27.0968 | 6720 | 0.0000 | 1.0 |
164
+ | 0.0009 | 27.3387 | 6780 | 0.0000 | 1.0 |
165
+ | 0.0009 | 27.5806 | 6840 | 0.0000 | 1.0 |
166
+ | 0.0009 | 27.8226 | 6900 | 0.0000 | 1.0 |
167
+ | 0.0009 | 28.0645 | 6960 | 0.0000 | 1.0 |
168
+ | 0.0007 | 28.3065 | 7020 | 0.0000 | 1.0 |
169
+ | 0.0007 | 28.5484 | 7080 | 0.0000 | 1.0 |
170
+ | 0.0007 | 28.7903 | 7140 | 0.0000 | 1.0 |
171
+ | 0.0007 | 29.0323 | 7200 | 0.0000 | 1.0 |
172
+ | 0.0007 | 29.2742 | 7260 | 0.0000 | 1.0 |
173
+ | 0.0007 | 29.5161 | 7320 | 0.0000 | 1.0 |
174
+ | 0.0007 | 29.7581 | 7380 | 0.0000 | 1.0 |
175
+ | 0.0007 | 30.0 | 7440 | 0.0000 | 1.0 |
176
+ | 0.0009 | 30.2419 | 7500 | 0.0000 | 1.0 |
177
+ | 0.0009 | 30.4839 | 7560 | 0.0000 | 1.0 |
178
+ | 0.0009 | 30.7258 | 7620 | 0.0000 | 1.0 |
179
+ | 0.0009 | 30.9677 | 7680 | 0.0000 | 1.0 |
180
+ | 0.0009 | 31.2097 | 7740 | 0.0000 | 1.0 |
181
+ | 0.0009 | 31.4516 | 7800 | 0.0000 | 1.0 |
182
+ | 0.0009 | 31.6935 | 7860 | 0.0000 | 1.0 |
183
+ | 0.0009 | 31.9355 | 7920 | 0.0000 | 1.0 |
184
+ | 0.0009 | 32.1774 | 7980 | 0.0000 | 1.0 |
185
+ | 0.0 | 32.4194 | 8040 | 0.0000 | 1.0 |
186
+ | 0.0 | 32.6613 | 8100 | 0.0000 | 1.0 |
187
+ | 0.0 | 32.9032 | 8160 | 0.0000 | 1.0 |
188
+ | 0.0 | 33.1452 | 8220 | 0.0000 | 1.0 |
189
+ | 0.0 | 33.3871 | 8280 | 0.0000 | 1.0 |
190
+ | 0.0 | 33.6290 | 8340 | 0.0000 | 1.0 |
191
+ | 0.0 | 33.8710 | 8400 | 0.0000 | 1.0 |
192
+ | 0.0 | 34.1129 | 8460 | 0.0000 | 1.0 |
193
+ | 0.0 | 34.3548 | 8520 | 0.0000 | 1.0 |
194
+ | 0.0 | 34.5968 | 8580 | 0.0000 | 1.0 |
195
+ | 0.0 | 34.8387 | 8640 | 0.0000 | 1.0 |
196
+ | 0.0 | 35.0806 | 8700 | 0.0000 | 1.0 |
197
+ | 0.0 | 35.3226 | 8760 | 0.0000 | 1.0 |
198
+ | 0.0 | 35.5645 | 8820 | 0.0000 | 1.0 |
199
+ | 0.0 | 35.8065 | 8880 | 0.0000 | 1.0 |
200
+ | 0.0 | 36.0484 | 8940 | 0.0000 | 1.0 |
201
+ | 0.0 | 36.2903 | 9000 | 0.0000 | 1.0 |
202
+ | 0.0 | 36.5323 | 9060 | 0.0000 | 1.0 |
203
+ | 0.0 | 36.7742 | 9120 | 0.0000 | 1.0 |
204
+ | 0.0 | 37.0161 | 9180 | 0.0000 | 1.0 |
205
+ | 0.0 | 37.2581 | 9240 | 0.0000 | 1.0 |
206
+ | 0.0 | 37.5 | 9300 | 0.0000 | 1.0 |
207
+ | 0.0 | 37.7419 | 9360 | 0.0000 | 1.0 |
208
+ | 0.0 | 37.9839 | 9420 | 0.0000 | 1.0 |
209
+ | 0.0 | 38.2258 | 9480 | 0.0000 | 1.0 |
210
+ | 0.0 | 38.4677 | 9540 | 0.0000 | 1.0 |
211
+ | 0.0 | 38.7097 | 9600 | 0.0000 | 1.0 |
212
+ | 0.0 | 38.9516 | 9660 | 0.0000 | 1.0 |
213
+ | 0.0 | 39.1935 | 9720 | 0.0000 | 1.0 |
214
+ | 0.0 | 39.4355 | 9780 | 0.0000 | 1.0 |
215
+ | 0.0 | 39.6774 | 9840 | 0.0000 | 1.0 |
216
+ | 0.0 | 39.9194 | 9900 | 0.0000 | 1.0 |
217
 
218
 
219
  ### Framework versions