--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer - dolly - ipex - max series gpu base_model: microsoft/phi-1_5 datasets: - generator - databricks/databricks-dolly-15k model-index: - name: phi-1_5-lora-tuned-sft-dolly results: [] --- # phi-1_5-lora-tuned-sft-dolly This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 2.4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Hardware Trained model on Intel Max 1550 GPU ## Training and evaluation data databricks/databricks-dolly-15k ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - training_steps: 593 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.7868 | 0.8065 | 100 | 2.5808 | | 2.547 | 1.6129 | 200 | 2.4670 | | 2.4664 | 2.4194 | 300 | 2.4305 | | 2.4586 | 3.2258 | 400 | 2.4108 | | 2.4204 | 4.0323 | 500 | 2.4000 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.1.0.post0+cxx11.abi - Datasets 2.19.1 - Tokenizers 0.19.1