--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Quiero un programador para mantenimiento regular de mi e-commerce. - text: Quiero contratar un ilustrador para un proyecto puntual. - text: Requiero un consultor en agronomía para optimizar el rendimiento de mis cultivos. - text: ¿Podrían darme ejemplos de perfiles con experiencia en marketing B2B? - text: Busco a alguien que realice un análisis mensual de mi estrategia SEO. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: hiiamsid/sentence_similarity_spanish_es model-index: - name: SetFit with hiiamsid/sentence_similarity_spanish_es results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6086956521739131 name: Accuracy --- # SetFit with hiiamsid/sentence_similarity_spanish_es This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [hiiamsid/sentence_similarity_spanish_es](https://huggingface.co/hiiamsid/sentence_similarity_spanish_es) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | low | | | medium | | | high | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6087 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("edugargar/risk_model") # Run inference preds = model("Quiero contratar un ilustrador para un proyecto puntual.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 7 | 11.0 | 17 | | Label | Training Sample Count | |:-------|:----------------------| | high | 27 | | low | 42 | | medium | 9 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0045 | 1 | 0.376 | - | | 0.2273 | 50 | 0.1977 | - | | 0.4545 | 100 | 0.0502 | - | | 0.6818 | 150 | 0.0018 | - | | 0.9091 | 200 | 0.0006 | - | | 1.1364 | 250 | 0.0005 | - | | 1.3636 | 300 | 0.0003 | - | | 1.5909 | 350 | 0.0003 | - | | 1.8182 | 400 | 0.0002 | - | | 2.0455 | 450 | 0.0002 | - | | 2.2727 | 500 | 0.0002 | - | | 2.5 | 550 | 0.0002 | - | | 2.7273 | 600 | 0.0002 | - | | 2.9545 | 650 | 0.0002 | - | | 3.1818 | 700 | 0.0002 | - | | 3.4091 | 750 | 0.0002 | - | | 3.6364 | 800 | 0.0002 | - | | 3.8636 | 850 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.42.2 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```