--- language: es tags: - sagemaker - bertin - TextClassification - SentimentAnalysis license: apache-2.0 datasets: - IMDbreviews_es metrics: - accuracy model-index: - name: bertin_base_sentiment_analysis_es results: - task: name: Sentiment Analysis type: sentiment-analysis dataset: name: "IMDb Reviews in Spanish" type: IMDbreviews_es metrics: - name: Accuracy type: accuracy value: 0.898933 - name: F1 Score type: f1 value: 0.8989063 - name: Precision type: precision value: 0.8771473 - name: Recall type: recall value: 0.9217724 widget: - text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" --- # Model bertin_base_sentiment_analysis_es ## **A finetuned model for Sentiment analysis in Spanish** This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is **Bertin base** which is a RoBERTa-base model pre-trained on the Spanish portion of mC4 using Flax. It was trained by the Bertin Project.[Link to base model](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) Article: BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling - Author = Javier De la Rosa y Eduardo G. Ponferrada y Manu Romero y Paulo Villegas y Pablo González de Prado Salas y María Grandury, - journal = Procesamiento del Lenguaje Natural, - volume = 68, number = 0, year = 2022 - url = http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6403 ## Dataset The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages. Sizes of datasets: - Train dataset: 42,500 - Validation dataset: 3,750 - Test dataset: 3,750 ## Intended uses & limitations This model is intented for Sentiment Analysis for spanish corpus and finetuned specially for movie reviews but it can be applied to other kind of reviews. ## Hyperparameters { "epochs": "4", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "3e-05", "model_name": "\"bertin-project/bertin-roberta-base-spanish\"", "sagemaker_container_log_level": "20", "sagemaker_program": "\"train.py\"", } ## Evaluation results - Accuracy = 0.8989333333333334 - F1 Score = 0.8989063750333421 - Precision = 0.877147319104633 - Recall = 0.9217724288840262 ## Test results ## Model in action ### Usage for Sentiment Analysis ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/bertin_base_sentiment_analysis_es") text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) output = outputs.logits.argmax(1) ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)