Improve model card: add link to code and example usage (#1)
Browse files- Improve model card: add link to code and example usage (e642600c900164946ec1791311955e78ae44d2a3)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
library_name: transformers
|
4 |
base_model: openai/whisper-large-v3
|
5 |
-
|
6 |
-
|
7 |
-
- automatic-speech-recognition
|
8 |
-
- whisper
|
9 |
-
- hf-asr-leaderboard
|
10 |
pipeline_tag: automatic-speech-recognition
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Model Card for Lite-Whisper large-v3
|
@@ -16,6 +16,41 @@ pipeline_tag: automatic-speech-recognition
|
|
16 |
|
17 |
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
## Benchmark Results
|
20 |
|
21 |
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: openai/whisper-large-v3
|
3 |
+
library_name: transformers
|
4 |
+
license: apache-2.0
|
|
|
|
|
|
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
+
tags:
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- whisper
|
10 |
+
- hf-asr-leaderboard
|
11 |
---
|
12 |
|
13 |
# Model Card for Lite-Whisper large-v3
|
|
|
16 |
|
17 |
Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details.
|
18 |
|
19 |
+
Here's a code snippet to get started:
|
20 |
+
```python
|
21 |
+
import librosa
|
22 |
+
import torch
|
23 |
+
from transformers import AutoProcessor, AutoModel
|
24 |
+
|
25 |
+
device = "cuda:0"
|
26 |
+
dtype = torch.float16
|
27 |
+
|
28 |
+
# load the compressed Whisper model
|
29 |
+
model = AutoModel.from_pretrained(
|
30 |
+
"efficient-speech/lite-whisper-large-v3-turbo",
|
31 |
+
trust_remote_code=True,
|
32 |
+
)
|
33 |
+
model.to(dtype).to(device)
|
34 |
+
|
35 |
+
# we use the same processor as the original model
|
36 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
37 |
+
|
38 |
+
# set the path to your audio file
|
39 |
+
path = "path/to/audio.wav"
|
40 |
+
audio, _ = librosa.load(path, sr=16000)
|
41 |
+
|
42 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
43 |
+
input_features = input_features.to(dtype).to(device)
|
44 |
+
|
45 |
+
predicted_ids = model.generate(input_features)
|
46 |
+
transcription = processor.batch_decode(
|
47 |
+
predicted_ids,
|
48 |
+
skip_special_tokens=True
|
49 |
+
)[0]
|
50 |
+
|
51 |
+
print(transcription)
|
52 |
+
```
|
53 |
+
|
54 |
## Benchmark Results
|
55 |
|
56 |
Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted):
|