{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9d1ea4d000>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687337069009304819, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB8gkL3c/y4/m5q7Pk/zmz8ltFu+blxmP9ziJTrKG3E+g/JPP8ju4bypGi4+g1hiPobCAL+9/xDAxfcYvh/rSL/FK/s+SQbXv/odG77hyWS9iNYTP74pGD8GrWO/4kiSPuXuZT+/Cco+cK4EP5ygkb9uMFK/8qwDP/Ql5D6dJJI+IxNHv8yG9D3HIpg+vL3OvW0Tmj5ACpq/BRo4v1P1Wr9FdIa/c4dLPpBf4D3GnEY/+syBPnAyVr4F6FA/CHvOPNHjLL+NGpK/Kw+jvpF4iz7Pgo6/vwnKPnCuBD87A2E/ZY4hP1CrfL76vAU/CG6iPtm+ur2hrKI+31BLvtohsr/ZOeM+zKnWP0WshL9HgFk/iQ8hP+aafr3iD24/GSCzvmncnz9peRm9xf0Dv2aUAb+DPDa/CyN+Pqsszj83qse+z4KOv78Jyj5wrgQ/OwNhP1zU8T5vHNY+Pcv1PtKcZj+l3WA9peeSv8D/gD5ZlZi/9OWUPq3d9L9OnZ8/n0Gmv+ABU7/l08K+3bkovvGcaj8rL04+Mr0evetmNj/z55m/eJ9AP4y9Xr8VIP6+7c7iP8+Cjr+/Cco+sff2v5ygkb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABujg42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9/T3vQAAAAA0oPe/AAAAAGWVir0AAAAA4a7sPwAAAADWdja9AAAAAP5/8j8AAAAACJGkvQAAAABhP9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYbbYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDmgbT0AAAAAhYzgvwAAAAC6eKG9AAAAADjD+j8AAAAAbiaLvQAAAAAYKfI/AAAAAK9pEL4AAAAAJWEAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANhb4LUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAZl4Q9AAAAAJ4o3b8AAAAA5KR/vQAAAABojeA/AAAAAL85Cr0AAAAAw2frPwAAAACjZLO9AAAAAKCP5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjdtC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOAdGPQAAAADc3d2/AAAAAAofRTsAAAAAwGDkPwAAAACD0tG9AAAAAJ3H+T8AAAAA95GzvQAAAACN6di/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJPs0AeaKDWMAWyUTegDjAF0lEdAr12fjZL7GnV9lChoBkdAmfSe98JD3WgHTegDaAhHQK9fDe/Ho5h1fZQoaAZHQJqoPnJT2nNoB03oA2gIR0CvX3oRRMvidX2UKGgGR0CTtMxJNCZ4aAdN6ANoCEdAr2OD0L+glHV9lChoBkdAnKWJ2ECeVmgHTegDaAhHQK9rSLR8c+91fZQoaAZHQJx7Cr7wazhoB03oA2gIR0CvbE4IrvsrdX2UKGgGR0Ca8YQNTcZcaAdN6ANoCEdAr2y4plSS/3V9lChoBkdAmknSup0fYGgHTegDaAhHQK9wosrd30R1fZQoaAZHQJ1y4/lhgE5oB03oA2gIR0Cve/wAlv61dX2UKGgGR0Cbl9UliSaFaAdN6ANoCEdAr32JprULD3V9lChoBkdAmjWV/6O5rmgHTegDaAhHQK99/+GXXy11fZQoaAZHQJ2NgJlar3loB03oA2gIR0CvgfF5WzWxdX2UKGgGR0CcsElnAZbZaAdN6ANoCEdAr4mvOQhfSnV9lChoBkdAm95SSidrf2gHTegDaAhHQK+KyeRxLkF1fZQoaAZHQJxRP8cdYGNoB03oA2gIR0Cvizgb6xgRdX2UKGgGR0CIZ3fTCtRvaAdN6ANoCEdAr48/Q+lj3HV9lChoBkdAm2v9zCDVY2gHTegDaAhHQK+aXqHGjsV1fZQoaAZHQJ10832mHgxoB03oA2gIR0Cvm/j4xk/bdX2UKGgGR0Cdx9+OOsDGaAdN6ANoCEdAr5xuLBKtgnV9lChoBkdAoBTPgDRtxmgHTegDaAhHQK+giuXeFcp1fZQoaAZHQJ3ONHiFTNtoB03oA2gIR0CvqGQ6hg3MdX2UKGgGR0CeZhxG2CumaAdN6ANoCEdAr6lu938n/nV9lChoBkdAl/iBIe5nUWgHTegDaAhHQK+p3O6/Zdx1fZQoaAZHQJyFruZ1FH9oB03oA2gIR0Cvrc0RODaodX2UKGgGR0CUllj6eoUBaAdN6ANoCEdAr7kUa/ATI3V9lChoBkdAmeT7BO58SmgHTegDaAhHQK+6rD3M6il1fZQoaAZHQJza0Sg5BC5oB03oA2gIR0CvuxyKWLP2dX2UKGgGR0CWQ43fhuO0aAdN6ANoCEdAr78pjBl+VnV9lChoBkdAl3040ALiM2gHTegDaAhHQK/G8lJpWWB1fZQoaAZHQJZ7GlP8AJdoB03oA2gIR0Cvx/8s189fdX2UKGgGR0CTAWYht+CsaAdN6ANoCEdAr8hs1VHWjHV9lChoBkdAd1cAZsKsuGgHTegDaAhHQK/MdNke6qd1fZQoaAZHQI/eFX7tReloB03oA2gIR0Cv15r5IpYtdX2UKGgGR0CXhCbRWtEHaAdN6ANoCEdAr9kYffXPJXV9lChoBkdAmB9O801qFmgHTegDaAhHQK/ZhwVCXyB1fZQoaAZHQJQiEnF5v99oB03oA2gIR0Cv3aSXdCVsdX2UKGgGR0CSsB2Xb/OuaAdN6ANoCEdAr+WV+so2GnV9lChoBkdAmH3KQA+6iGgHTegDaAhHQK/moVclgMN1fZQoaAZHQJN/eLsKLKpoB03oA2gIR0Cv5w58jRlZdX2UKGgGR0CQxHmygPEsaAdN6ANoCEdAr+sMQqZtvXV9lChoBkdAmNuz8HfMwGgHTegDaAhHQK/2ZypaRp11fZQoaAZHQJfvM8B+4LFoB03oA2gIR0Cv99zvRZ2ZdX2UKGgGR0CXro62OQyRaAdN6ANoCEdAr/hLrcCYC3V9lChoBkdAlc3oOc2BKGgHTegDaAhHQK/8Z8WKuSx1fZQoaAZHQJYDQ/2TPjZoB03oA2gIR0CwAjrUgB91dX2UKGgGR0Ca28AfMfRvaAdN6ANoCEdAsALB1vES/XV9lChoBkdAmpTSq+8Gs2gHTegDaAhHQLAC9oakyk91fZQoaAZHQJn0uz7di2FoB03oA2gIR0CwBPWwA2hqdX2UKGgGR0Cd5cpWFN+LaAdN6ANoCEdAsAqZQfp2U3V9lChoBkdAmiKu3MINVmgHTegDaAhHQLALNc7yQPt1fZQoaAZHQJvqb41xbStoB03oA2gIR0CwC2rFn7HidX2UKGgGR0CdDsUrCm/GaAdN6ANoCEdAsA1oFC9h7XV9lChoBkdAmb728yvcJ2gHTegDaAhHQLARZBe5Wil1fZQoaAZHQJ+Mx1zQu29oB03oA2gIR0CwEeoczZYgdX2UKGgGR0CeO/9y925haAdN6ANoCEdAsBIigsbvPXV9lChoBkdAmMdyhew9q2gHTegDaAhHQLAUG+W4Vh11fZQoaAZHQJ3fy938n/loB03oA2gIR0CwGdoiC8ODdX2UKGgGR0CcB8zUZvUCaAdN6ANoCEdAsBp1Fvybx3V9lChoBkdAnYvRyGSIQGgHTegDaAhHQLAaqzxgAp91fZQoaAZHQJ5Tw2S+xnpoB03oA2gIR0CwHKdXgccVdX2UKGgGR0Caw7fA9FF2aAdN6ANoCEdAsCCZtGd7OXV9lChoBkdAm1Cdoi9qUWgHTegDaAhHQLAhICBPKuB1fZQoaAZHQJz+xU+9rXVoB03oA2gIR0CwIVtPDYRNdX2UKGgGR0CasY4yGi5/aAdN6ANoCEdAsCNnFZPl+3V9lChoBkdAm4/wqmTC+GgHTegDaAhHQLApEcH4XXR1fZQoaAZHQJucfJcPe55oB03oA2gIR0CwKajA8B+4dX2UKGgGR0CbE1hs67ulaAdN6ANoCEdAsCnfgIhQnHV9lChoBkdAnZXw2ZRbbGgHTegDaAhHQLAr2GNrCWN1fZQoaAZHQJuxAcENe+poB03oA2gIR0CwMKOz6ab4dX2UKGgGR0CbBLGFzuF6aAdN6ANoCEdAsDF53V09yXV9lChoBkdAm342iL2pQ2gHTegDaAhHQLAx1K9PDYR1fZQoaAZHQJzqj/Q0GeNoB03oA2gIR0CwNR97rs0IdX2UKGgGR0CeqeDCgsbvaAdN6ANoCEdAsDp62tuDSXV9lChoBkdAn/mP3WWhRWgHTegDaAhHQLA6+wnH/951fZQoaAZHQJybpDCxeLNoB03oA2gIR0CwOzOF+NLldX2UKGgGR0CdGPc+JP69aAdN6ANoCEdAsD0wn/kvK3V9lChoBkdAoB0zNKRMe2gHTegDaAhHQLBBFn8sMAp1fZQoaAZHQJ60uQOnVG1oB03oA2gIR0CwQZuc2BJ7dX2UKGgGR0CfkiZ9uxbCaAdN6ANoCEdAsEHUoTfzjHV9lChoBkdAn5SBmCiAUmgHTegDaAhHQLBEUiiZfD11fZQoaAZHQJh0b2bobGZoB03oA2gIR0CwSbTyJ9ApdX2UKGgGR0CZJVJNj9XLaAdN6ANoCEdAsEo5d8iOenV9lChoBkdAlBjwpKBd2WgHTegDaAhHQLBKcpNsWO91fZQoaAZHQJj3kfT1CgNoB03oA2gIR0CwTGtM495hdX2UKGgGR0CZqD3rleWwaAdN6ANoCEdAsFBuPtD2J3V9lChoBkdAmYSg6EJ0GWgHTegDaAhHQLBQ9iCrcTJ1fZQoaAZHQJh5cXk5p8FoB03oA2gIR0CwUSzLr5ZbdX2UKGgGR0CZMjB91EE1aAdN6ANoCEdAsFPPfAKv3nV9lChoBkdAmPp3aJyhjGgHTegDaAhHQLBZM9hqj8F1fZQoaAZHQJQt6GfwqiJoB03oA2gIR0CwWbTY287IdX2UKGgGR0Cb0+jriVB2aAdN6ANoCEdAsFnuWiUPhHV9lChoBkdAmEq4xk/bCmgHTegDaAhHQLBb6bmU4aR1fZQoaAZHQJN/fNVzZHxoB03oA2gIR0CwX9QfyPMjdX2UKGgGR0CZnJnFo+OfaAdN6ANoCEdAsGBZnCfpU3V9lChoBkdAmrBwVGkN4WgHTegDaAhHQLBgkkxREWt1fZQoaAZHQJo300DU3GZoB03oA2gIR0CwYxUHhS9/dX2UKGgGR0Ca8iarFOwgaAdN6ANoCEdAsGiGO801qHV9lChoBkdAmgV1UuL742gHTegDaAhHQLBpBXt0FKV1fZQoaAZHQJvISY4Qz1toB03oA2gIR0CwaTvp2U0OdX2UKGgGR0CbXQiLEUCaaAdN6ANoCEdAsGsxng5zYHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}