--- license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: mT5-lithuanian-simplifier results: [] --- # mT5-lithuanian-simplifier This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0687 - Rouge1: 0.7322 - Rouge2: 0.5833 - Rougel: 0.7261 - Gen Len: 34.6325 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:-------:| | 23.3756 | 0.48 | 200 | 16.6054 | 0.011 | 0.0006 | 0.0105 | 512.0 | | 1.435 | 0.96 | 400 | 0.5767 | 0.1436 | 0.0387 | 0.1307 | 39.0358 | | 0.2269 | 1.44 | 600 | 0.1658 | 0.4744 | 0.317 | 0.4631 | 34.6325 | | 0.1709 | 1.91 | 800 | 0.1030 | 0.5865 | 0.4231 | 0.577 | 34.6325 | | 0.1311 | 2.39 | 1000 | 0.0923 | 0.6245 | 0.4626 | 0.6173 | 34.6325 | | 0.1196 | 2.87 | 1200 | 0.0851 | 0.6759 | 0.5159 | 0.6681 | 34.6325 | | 0.1156 | 3.35 | 1400 | 0.0761 | 0.6927 | 0.5288 | 0.6845 | 34.6325 | | 0.0897 | 3.83 | 1600 | 0.0756 | 0.698 | 0.5352 | 0.6906 | 34.6325 | | 0.1149 | 4.31 | 1800 | 0.0738 | 0.7085 | 0.55 | 0.7022 | 34.6325 | | 0.0967 | 4.78 | 2000 | 0.0725 | 0.7187 | 0.5632 | 0.712 | 34.6325 | | 0.1097 | 5.26 | 2200 | 0.0703 | 0.7214 | 0.5645 | 0.7143 | 34.6325 | | 0.0852 | 5.74 | 2400 | 0.0708 | 0.7241 | 0.5724 | 0.7176 | 34.6325 | | 0.0537 | 6.22 | 2600 | 0.0693 | 0.7285 | 0.578 | 0.7217 | 34.6325 | | 0.0866 | 6.7 | 2800 | 0.0698 | 0.7277 | 0.5795 | 0.7216 | 34.6325 | | 0.0692 | 7.18 | 3000 | 0.0685 | 0.7336 | 0.5849 | 0.7274 | 34.6325 | | 0.0786 | 7.66 | 3200 | 0.0687 | 0.7322 | 0.5833 | 0.7261 | 34.6325 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0