import argparse import gradio as gr from kohya_ss.library import train_util, config_util from scripts import presets, ui, ui_overrides from scripts.runner import initialize_runner from scripts.utilities import args_to_gradio, load_args_template, options_to_gradio def title(): return "Train network" def create_ui(): sd_models_arguments = argparse.ArgumentParser() dataset_arguments = argparse.ArgumentParser() training_arguments = argparse.ArgumentParser() optimizer_arguments = argparse.ArgumentParser() config_arguments = argparse.ArgumentParser() train_util.add_sd_models_arguments(sd_models_arguments) train_util.add_dataset_arguments(dataset_arguments, True, True, True) train_util.add_training_arguments(training_arguments, True) train_util.add_optimizer_arguments(optimizer_arguments) config_util.add_config_arguments(config_arguments) sd_models_options = {} dataset_options = {} training_options = {} optimizer_options = {} config_options = {} network_options = {} templates, script_file = load_args_template("train_network.py") get_options = lambda: { **sd_models_options, **dataset_options, **training_options, **optimizer_options, **config_options, **network_options, } get_templates = lambda: { **sd_models_arguments.__dict__["_option_string_actions"], **dataset_arguments.__dict__["_option_string_actions"], **training_arguments.__dict__["_option_string_actions"], **optimizer_arguments.__dict__["_option_string_actions"], **config_arguments.__dict__["_option_string_actions"], **templates, } with gr.Column(): init_runner = initialize_runner(script_file, get_templates, get_options) with gr.Box(): with gr.Row(): init_id = presets.create_ui("train_network", get_templates, get_options) with gr.Row(): with gr.Group(): with gr.Box(): ui.title("Network options") options_to_gradio(templates, network_options) with gr.Box(): ui.title("Model options") args_to_gradio(sd_models_arguments, sd_models_options) with gr.Box(): ui.title("Dataset Config options") args_to_gradio(config_arguments, config_options) with gr.Box(): ui.title("Dataset options") args_to_gradio(dataset_arguments, dataset_options) with gr.Box(): ui.title("Training options") args_to_gradio(training_arguments, training_options) with gr.Box(): ui.title("Optimizer options") args_to_gradio( optimizer_arguments, optimizer_options, ui_overrides.OPTIMIZER_OPTIONS, ) init_runner() init_id()