# Openpose # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose # 2nd Edited by https://github.com/Hzzone/pytorch-openpose # 3rd Edited by ControlNet # 4th Edited by ControlNet (added face and correct hands) # 5th Edited by ControlNet (Improved JSON serialization/deserialization, and lots of bug fixs) # This preprocessor is licensed by CMU for non-commercial use only. import os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" import torch import numpy as np from . import util from .body import Body, BodyResult, Keypoint from .hand import Hand from .face import Face from .types import HandResult, FaceResult, HumanPoseResult, AnimalPoseResult from modules import devices from annotator.annotator_path import models_path from .animalpose import draw_animalposes from typing import Tuple, List, Callable, Union, Optional body_model_path = ( "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" ) hand_model_path = ( "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" ) face_model_path = ( "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" ) remote_onnx_det = "https://huggingface.co/yzd-v/DWPose/resolve/main/yolox_l.onnx" remote_onnx_pose = ( "https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.onnx" ) animal_onnx_pose = "https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/Annotators/rtmpose-m_simcc-ap10k_pt-aic-coco_210e-256x256-7a041aa1_20230206.onnx" def draw_poses( poses: List[HumanPoseResult], H, W, draw_body=True, draw_hand=True, draw_face=True ): """ Draw the detected poses on an empty canvas. Args: poses (List[HumanPoseResult]): A list of HumanPoseResult objects containing the detected poses. H (int): The height of the canvas. W (int): The width of the canvas. draw_body (bool, optional): Whether to draw body keypoints. Defaults to True. draw_hand (bool, optional): Whether to draw hand keypoints. Defaults to True. draw_face (bool, optional): Whether to draw face keypoints. Defaults to True. Returns: numpy.ndarray: A 3D numpy array representing the canvas with the drawn poses. """ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) for pose in poses: if draw_body: canvas = util.draw_bodypose(canvas, pose.body.keypoints) if draw_hand: canvas = util.draw_handpose(canvas, pose.left_hand) canvas = util.draw_handpose(canvas, pose.right_hand) if draw_face: canvas = util.draw_facepose(canvas, pose.face) return canvas def decode_json_as_poses( pose_json: dict, ) -> Tuple[List[HumanPoseResult], List[AnimalPoseResult], int, int]: """Decode the json_string complying with the openpose JSON output format to poses that controlnet recognizes. https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md Args: json_string: The json string to decode. Returns: human_poses animal_poses canvas_height canvas_width """ height = pose_json["canvas_height"] width = pose_json["canvas_width"] def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def decompress_keypoints( numbers: Optional[List[float]], ) -> Optional[List[Optional[Keypoint]]]: if not numbers: return None assert len(numbers) % 3 == 0 def create_keypoint(x, y, c): if c < 1.0: return None keypoint = Keypoint(x, y) return keypoint return [create_keypoint(x, y, c) for x, y, c in chunks(numbers, n=3)] return ( [ HumanPoseResult( body=BodyResult( keypoints=decompress_keypoints(pose.get("pose_keypoints_2d")) ), left_hand=decompress_keypoints(pose.get("hand_left_keypoints_2d")), right_hand=decompress_keypoints(pose.get("hand_right_keypoints_2d")), face=decompress_keypoints(pose.get("face_keypoints_2d")), ) for pose in pose_json.get("people", []) ], [decompress_keypoints(pose) for pose in pose_json.get("animals", [])], height, width, ) def encode_poses_as_json( poses: List[HumanPoseResult], animals: List[AnimalPoseResult], canvas_height: int, canvas_width: int, ) -> dict: """Encode the pose as a JSON compatible dict following openpose JSON output format: https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md """ def compress_keypoints( keypoints: Union[List[Keypoint], None] ) -> Union[List[float], None]: if not keypoints: return None return [ value for keypoint in keypoints for value in ( [float(keypoint.x), float(keypoint.y), 1.0] if keypoint is not None else [0.0, 0.0, 0.0] ) ] return { "people": [ { "pose_keypoints_2d": compress_keypoints(pose.body.keypoints), "face_keypoints_2d": compress_keypoints(pose.face), "hand_left_keypoints_2d": compress_keypoints(pose.left_hand), "hand_right_keypoints_2d": compress_keypoints(pose.right_hand), } for pose in poses ], "animals": [compress_keypoints(animal) for animal in animals], "canvas_height": canvas_height, "canvas_width": canvas_width, } class OpenposeDetector: """ A class for detecting human poses in images using the Openpose model. Attributes: model_dir (str): Path to the directory where the pose models are stored. """ model_dir = os.path.join(models_path, "openpose") def __init__(self): self.device = devices.get_device_for("controlnet") self.body_estimation = None self.hand_estimation = None self.face_estimation = None self.dw_pose_estimation = None self.animal_pose_estimation = None def load_model(self): """ Load the Openpose body, hand, and face models. """ body_modelpath = os.path.join(self.model_dir, "body_pose_model.pth") hand_modelpath = os.path.join(self.model_dir, "hand_pose_model.pth") face_modelpath = os.path.join(self.model_dir, "facenet.pth") if not os.path.exists(body_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(body_model_path, model_dir=self.model_dir) if not os.path.exists(hand_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(hand_model_path, model_dir=self.model_dir) if not os.path.exists(face_modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(face_model_path, model_dir=self.model_dir) self.body_estimation = Body(body_modelpath) self.hand_estimation = Hand(hand_modelpath) self.face_estimation = Face(face_modelpath) def load_dw_model(self): from .wholebody import Wholebody # DW Pose def load_model(filename: str, remote_url: str): local_path = os.path.join(self.model_dir, filename) if not os.path.exists(local_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_url, model_dir=self.model_dir) return local_path onnx_det = load_model("yolox_l.onnx", remote_onnx_det) onnx_pose = load_model("dw-ll_ucoco_384.onnx", remote_onnx_pose) self.dw_pose_estimation = Wholebody(onnx_det, onnx_pose) def load_animalpose_model(self): from .animalpose import AnimalPose # Animalpose def load_model(filename: str, remote_url: str): """ Load the model from the specified filename and remote URL if it doesn't exist locally. Args: filename (str): The filename of the model. remote_url (str): The remote URL of the model. """ local_path = os.path.join(self.model_dir, filename) if not os.path.exists(local_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_url, model_dir=self.model_dir) return local_path onnx_det = load_model("yolox_l.onnx", remote_onnx_det) onnx_pose = load_model( "rtmpose-m_simcc-ap10k_pt-aic-coco_210e-256x256-7a041aa1_20230206.onnx", animal_onnx_pose, ) self.animal_pose_estimation = AnimalPose(onnx_det, onnx_pose) def unload_model(self): """ Unload the Openpose models by moving them to the CPU. Note: DW Pose models always run on CPU, so no need to `unload` them. """ if self.body_estimation is not None: self.body_estimation.model.to("cpu") self.hand_estimation.model.to("cpu") self.face_estimation.model.to("cpu") def detect_hands( self, body: BodyResult, oriImg ) -> Tuple[Union[HandResult, None], Union[HandResult, None]]: left_hand = None right_hand = None H, W, _ = oriImg.shape for x, y, w, is_left in util.handDetect(body, oriImg): peaks = self.hand_estimation(oriImg[y : y + w, x : x + w, :]).astype( np.float32 ) if peaks.ndim == 2 and peaks.shape[1] == 2: peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float( W ) peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float( H ) hand_result = [Keypoint(x=peak[0], y=peak[1]) for peak in peaks] if is_left: left_hand = hand_result else: right_hand = hand_result return left_hand, right_hand def detect_face(self, body: BodyResult, oriImg) -> Union[FaceResult, None]: face = util.faceDetect(body, oriImg) if face is None: return None x, y, w = face H, W, _ = oriImg.shape heatmaps = self.face_estimation(oriImg[y : y + w, x : x + w, :]) peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype( np.float32 ) if peaks.ndim == 2 and peaks.shape[1] == 2: peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) return [Keypoint(x=peak[0], y=peak[1]) for peak in peaks] return None def detect_poses( self, oriImg, include_hand=False, include_face=False ) -> List[HumanPoseResult]: """ Detect poses in the given image. Args: oriImg (numpy.ndarray): The input image for pose detection. include_hand (bool, optional): Whether to include hand detection. Defaults to False. include_face (bool, optional): Whether to include face detection. Defaults to False. Returns: List[HumanPoseResult]: A list of HumanPoseResult objects containing the detected poses. """ if self.body_estimation is None: self.load_model() self.body_estimation.model.to(self.device) self.hand_estimation.model.to(self.device) self.face_estimation.model.to(self.device) self.body_estimation.cn_device = self.device self.hand_estimation.cn_device = self.device self.face_estimation.cn_device = self.device oriImg = oriImg[:, :, ::-1].copy() H, W, C = oriImg.shape with torch.no_grad(): candidate, subset = self.body_estimation(oriImg) bodies = self.body_estimation.format_body_result(candidate, subset) results = [] for body in bodies: left_hand, right_hand, face = (None,) * 3 if include_hand: left_hand, right_hand = self.detect_hands(body, oriImg) if include_face: face = self.detect_face(body, oriImg) results.append( HumanPoseResult( BodyResult( keypoints=[ Keypoint( x=keypoint.x / float(W), y=keypoint.y / float(H) ) if keypoint is not None else None for keypoint in body.keypoints ], total_score=body.total_score, total_parts=body.total_parts, ), left_hand, right_hand, face, ) ) return results def detect_poses_dw(self, oriImg) -> List[HumanPoseResult]: """ Detect poses in the given image using DW Pose: https://github.com/IDEA-Research/DWPose Args: oriImg (numpy.ndarray): The input image for pose detection. Returns: List[HumanPoseResult]: A list of HumanPoseResult objects containing the detected poses. """ from .wholebody import Wholebody # DW Pose self.load_dw_model() with torch.no_grad(): keypoints_info = self.dw_pose_estimation(oriImg.copy()) return Wholebody.format_result(keypoints_info) def detect_poses_animal(self, oriImg) -> List[AnimalPoseResult]: """ Detect poses in the given image using RTMPose AP10k model: https://github.com/abehonest/ControlNet_AnimalPose Args: oriImg (numpy.ndarray): The input image for pose detection. Returns: A list of AnimalPoseResult objects containing the detected animal poses. """ self.load_animalpose_model() with torch.no_grad(): return self.animal_pose_estimation(oriImg.copy()) def __call__( self, oriImg, include_body=True, include_hand=False, include_face=False, use_dw_pose=False, use_animal_pose=False, json_pose_callback: Callable[[str], None] = None, ): """ Detect and draw poses in the given image. Args: oriImg (numpy.ndarray): The input image for pose detection and drawing. include_body (bool, optional): Whether to include body keypoints. Defaults to True. include_hand (bool, optional): Whether to include hand keypoints. Defaults to False. include_face (bool, optional): Whether to include face keypoints. Defaults to False. use_dw_pose (bool, optional): Whether to use DW pose detection algorithm. Defaults to False. json_pose_callback (Callable, optional): A callback that accepts the pose JSON string. Returns: numpy.ndarray: The image with detected and drawn poses. """ H, W, _ = oriImg.shape animals = [] poses = [] if use_animal_pose: animals = self.detect_poses_animal(oriImg) elif use_dw_pose: poses = self.detect_poses_dw(oriImg) else: poses = self.detect_poses(oriImg, include_hand, include_face) if json_pose_callback: json_pose_callback(encode_poses_as_json(poses, animals, H, W)) if poses: assert len(animals) == 0 return draw_poses( poses, H, W, draw_body=include_body, draw_hand=include_hand, draw_face=include_face, ) else: return draw_animalposes(animals, H, W)