import numpy as np import cv2 import os def load_model(filename: str, remote_url: str, model_dir: str) -> str: """ Load the model from the specified filename and remote URL if it doesn't exist locally. Args: filename (str): The filename of the model. remote_url (str): The remote URL of the model. """ local_path = os.path.join(model_dir, filename) if not os.path.exists(local_path): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_url, model_dir=model_dir) return local_path def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def make_noise_disk(H, W, C, F): noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C)) noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC) noise = noise[F: F + H, F: F + W] noise -= np.min(noise) noise /= np.max(noise) if C == 1: noise = noise[:, :, None] return noise def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z def min_max_norm(x): x -= np.min(x) x /= np.maximum(np.max(x), 1e-5) return x def safe_step(x, step=2): y = x.astype(np.float32) * float(step + 1) y = y.astype(np.int32).astype(np.float32) / float(step) return y