--- license: mit datasets: - starmpcc/Asclepius-Synthetic-Clinical-Notes language: - en --- ## Overview This model, elucidator8918/clinical-ehr-prototype-0.3_GGUF is a Q5_K_M type GGUF and is tailored for clinical documentation, based on the Mistral-7B-Instruct-v0.3-sharded architecture fine-tuned on the Asclepius-Synthetic-Clinical-Notes dataset. ## Key Information - **Model Name**: Mistral-7B-Instruct-v0.3-sharded - **Fine-tuned Model Name**: elucidator8918/clinical-ehr-prototype-0.3_GGUF - **Dataset**: starmpcc/Asclepius-Synthetic-Clinical-Notes - **Language**: English (en) ## Model Details - **LoRA Parameters (QLoRA):** - LoRA attention dimension: 64 - Alpha parameter for LoRA scaling: 16 - Dropout probability for LoRA layers: 0.1 - **bitsandbytes Parameters:** - Activate 4-bit precision base model loading - Compute dtype for 4-bit base models: float16 - Quantization type: nf4 - Activate nested quantization for 4-bit base models: No - **TrainingArguments Parameters:** - Number of training epochs: 1 - Batch size per GPU for training: 4 - Batch size per GPU for evaluation: 4 - Gradient accumulation steps: 1 - Enable gradient checkpointing: Yes - Maximum gradient norm: 0.3 - Initial learning rate: 2e-4 - Weight decay: 0.001 - Optimizer: paged_adamw_32bit - Learning rate scheduler type: cosine - Warm-up ratio: 0.03 - Group sequences into batches with the same length: Yes ## License This model is released under the MIT License.