File size: 2,686 Bytes
2ed9665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DanSumT5-smallV_45767V_52355
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DanSumT5-smallV_45767V_52355

This model is a fine-tuned version of [emilstabil/DanSumT5-smallV_45767](https://huggingface.co/emilstabil/DanSumT5-smallV_45767) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4059
- Rouge1: 34.4784
- Rouge2: 11.7874
- Rougel: 21.2024
- Rougelsum: 32.0698
- Gen Len: 126.0211

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.99  | 47   | 2.4476          | 34.2545 | 11.5442 | 21.045  | 31.8547   | 126.557  |
| No log        | 2.0   | 95   | 2.4372          | 34.4857 | 11.8209 | 21.0909 | 32.063    | 126.5105 |
| No log        | 2.99  | 142  | 2.4321          | 33.9859 | 11.5454 | 21.0554 | 31.6295   | 126.5907 |
| No log        | 4.0   | 190  | 2.4220          | 34.4331 | 11.7682 | 21.2039 | 32.0393   | 126.827  |
| No log        | 4.99  | 237  | 2.4187          | 34.3511 | 11.8482 | 21.4824 | 31.9866   | 126.2447 |
| No log        | 6.0   | 285  | 2.4178          | 34.3999 | 12.0167 | 21.3841 | 32.094    | 126.3038 |
| No log        | 6.99  | 332  | 2.4119          | 34.0619 | 11.882  | 21.2583 | 31.713    | 126.0338 |
| No log        | 8.0   | 380  | 2.4081          | 34.3605 | 11.8248 | 21.3351 | 32.0082   | 125.9409 |
| No log        | 8.99  | 427  | 2.4072          | 34.2218 | 11.7791 | 21.3086 | 31.8756   | 125.8186 |
| No log        | 10.0  | 475  | 2.4066          | 34.5265 | 11.8846 | 21.3612 | 32.1396   | 125.8608 |
| 2.6208        | 10.88 | 517  | 2.4059          | 34.4784 | 11.7874 | 21.2024 | 32.0698   | 126.0211 |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3