File size: 2,693 Bytes
ea0f4ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-base-finetuned-test_63829_prefix_summarize
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-finetuned-test_63829_prefix_summarize

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3498
- Rouge1: 11.28
- Rouge2: 3.5248
- Rougel: 9.174
- Rougelsum: 10.6313
- Gen Len: 19.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 7.6624        | 1.25  | 500  | 2.6231          | 7.333   | 2.0471 | 6.2456 | 7.0157    | 14.01   |
| 3.3306        | 2.5   | 1000 | 2.5079          | 10.5135 | 3.0104 | 8.4645 | 9.8798    | 19.0    |
| 3.1123        | 3.75  | 1500 | 2.4512          | 10.5261 | 3.3739 | 8.6176 | 9.8711    | 19.0    |
| 2.9927        | 5.0   | 2000 | 2.4137          | 11.14   | 3.5973 | 9.2204 | 10.407    | 19.0    |
| 2.8765        | 6.25  | 2500 | 2.4050          | 10.9669 | 3.7633 | 9.1517 | 10.283    | 19.0    |
| 2.8211        | 7.5   | 3000 | 2.3828          | 11.6779 | 4.181  | 9.8295 | 10.9657   | 19.0    |
| 2.7589        | 8.75  | 3500 | 2.3756          | 11.6097 | 4.1335 | 9.7619 | 10.8368   | 19.0    |
| 2.722         | 10.0  | 4000 | 2.3627          | 11.8385 | 4.0634 | 9.6721 | 10.9386   | 19.0    |
| 2.6781        | 11.25 | 4500 | 2.3611          | 11.3415 | 3.5812 | 9.1328 | 10.6537   | 19.0    |
| 2.6648        | 12.5  | 5000 | 2.3524          | 11.3808 | 3.6088 | 9.2331 | 10.6316   | 19.0    |
| 2.6404        | 13.75 | 5500 | 2.3521          | 11.3031 | 3.5165 | 9.1629 | 10.6573   | 19.0    |
| 2.6397        | 15.0  | 6000 | 2.3498          | 11.28   | 3.5248 | 9.174  | 10.6313   | 19.0    |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3