File size: 2,693 Bytes
1cc36aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-base-finetuned-test_63829_prefix_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-test_63829_prefix_summarize
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3498
- Rouge1: 11.28
- Rouge2: 3.5248
- Rougel: 9.174
- Rougelsum: 10.6313
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:|
| 7.6624 | 1.25 | 500 | 2.6231 | 7.333 | 2.0471 | 6.2456 | 7.0157 | 14.01 |
| 3.3306 | 2.5 | 1000 | 2.5079 | 10.5135 | 3.0104 | 8.4645 | 9.8798 | 19.0 |
| 3.1123 | 3.75 | 1500 | 2.4512 | 10.5261 | 3.3739 | 8.6176 | 9.8711 | 19.0 |
| 2.9927 | 5.0 | 2000 | 2.4137 | 11.14 | 3.5973 | 9.2204 | 10.407 | 19.0 |
| 2.8765 | 6.25 | 2500 | 2.4050 | 10.9669 | 3.7633 | 9.1517 | 10.283 | 19.0 |
| 2.8211 | 7.5 | 3000 | 2.3828 | 11.6779 | 4.181 | 9.8295 | 10.9657 | 19.0 |
| 2.7589 | 8.75 | 3500 | 2.3756 | 11.6097 | 4.1335 | 9.7619 | 10.8368 | 19.0 |
| 2.722 | 10.0 | 4000 | 2.3627 | 11.8385 | 4.0634 | 9.6721 | 10.9386 | 19.0 |
| 2.6781 | 11.25 | 4500 | 2.3611 | 11.3415 | 3.5812 | 9.1328 | 10.6537 | 19.0 |
| 2.6648 | 12.5 | 5000 | 2.3524 | 11.3808 | 3.6088 | 9.2331 | 10.6316 | 19.0 |
| 2.6404 | 13.75 | 5500 | 2.3521 | 11.3031 | 3.5165 | 9.1629 | 10.6573 | 19.0 |
| 2.6397 | 15.0 | 6000 | 2.3498 | 11.28 | 3.5248 | 9.174 | 10.6313 | 19.0 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0
- Datasets 2.12.0
- Tokenizers 0.13.3
|