File size: 1,983 Bytes
019a489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-large_V8901
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-large_V8901

This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7406
- Rouge1: 19.3197
- Rouge2: 4.1196
- Rougel: 10.4848
- Rougelsum: 18.1364
- Gen Len: 547.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2 | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 12.1229       | 2.11  | 500  | 3.9460          | 15.5693 | 2.3792 | 9.3813  | 14.6801   | 547.0   |
| 5.6736        | 4.21  | 1000 | 3.1634          | 17.0598 | 3.1505 | 9.4845  | 15.8919   | 547.0   |
| 3.84          | 6.32  | 1500 | 2.0725          | 25.9095 | 8.9258 | 13.9444 | 24.3476   | 547.0   |
| 3.6041        | 8.42  | 2000 | 2.7824          | 19.0967 | 3.9799 | 10.5463 | 17.8219   | 547.0   |
| 3.3024        | 10.53 | 2500 | 2.7406          | 19.3197 | 4.1196 | 10.4848 | 18.1364   | 547.0   |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3