Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
---
|
4 |
+
|
5 |
+
## emozilla/landmark-llama-7b
|
6 |
+
|
7 |
+
This model is an out-of-the-box ready version of the LLaMA-7B variant of [Landmark Attention](https://arxiv.org/abs/2305.16300).
|
8 |
+
The original code is modified from the [Landmark GitHub](https://github.com/epfml/landmark-attention) and the weights from [here](https://huggingface.co/epfml/landmark-attention-llama7b-wdiff).
|
9 |
+
|
10 |
+
As a LLaMA variant, this model may be subject to the LLaMA license.
|
11 |
+
|
12 |
+
### To use
|
13 |
+
|
14 |
+
```python
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
16 |
+
import torch
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("emozilla/landmark-llama-7b", use_fast=False)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("emozilla/landmark-llama-7b", \
|
20 |
+
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
21 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
22 |
+
|
23 |
+
print(pipe("Somebody once told me the world is gonna roll me", \
|
24 |
+
max_new_tokens=256, temperature=0.8, do_sample=True))
|
25 |
+
```
|
26 |
+
|
27 |
+
You can configure the Landmark parameters by editing `mem_freq`, `mem_top_k`, `mem_max_seq_len`, and `mem_max_cache_size`.
|
28 |
+
|
29 |
+
```python
|
30 |
+
config = AutoConfig.from_pretrained("emozilla/landmark-llama-7b", trust_remote_code=True)
|
31 |
+
config.mem_top_k = 6
|
32 |
+
model = AutoModelForCausalLM.from_pretrained("emozilla/landmark-llama-7b", \
|
33 |
+
torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", config=config)
|
34 |
+
```
|