Upload PPO LunarLander-v2 trained agent
Browse files- README.md +16 -40
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- LunarLander-v2
|
4 |
-
- ppo
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
-
-
|
8 |
-
- deep-rl-course
|
9 |
model-index:
|
10 |
- name: PPO
|
11 |
results:
|
@@ -17,45 +16,22 @@ model-index:
|
|
17 |
type: LunarLander-v2
|
18 |
metrics:
|
19 |
- type: mean_reward
|
20 |
-
value:
|
21 |
name: mean_reward
|
22 |
verified: false
|
23 |
---
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
'wandb_entity': None
|
38 |
-
'capture_video': False
|
39 |
-
'env_id': 'LunarLander-v2'
|
40 |
-
'total_timesteps': 50000
|
41 |
-
'learning_rate': 0.00025
|
42 |
-
'num_envs': 4
|
43 |
-
'num_steps': 128
|
44 |
-
'anneal_lr': True
|
45 |
-
'gae': True
|
46 |
-
'gamma': 0.99
|
47 |
-
'gae_lambda': 0.95
|
48 |
-
'num_minibatches': 4
|
49 |
-
'update_epochs': 4
|
50 |
-
'norm_adv': True
|
51 |
-
'clip_coef': 0.2
|
52 |
-
'clip_vloss': True
|
53 |
-
'ent_coef': 0.01
|
54 |
-
'vf_coef': 0.5
|
55 |
-
'max_grad_norm': 0.5
|
56 |
-
'target_kl': None
|
57 |
-
'repo_id': 'enaitzb/ppo-LunarLander-v2'
|
58 |
-
'batch_size': 512
|
59 |
-
'minibatch_size': 128}
|
60 |
-
```
|
61 |
-
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
- LunarLander-v2
|
|
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 273.86 +/- 15.19
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7861ec122cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7861ec122d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7861ec122dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7861ec122e60>", "_build": "<function ActorCriticPolicy._build at 0x7861ec122ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7861ec122f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7861ec123010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7861ec1230a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7861ec123130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7861ec1231c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7861ec123250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7861ec1232e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7861ec2b7e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700582021203888267, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBvhT7VgR4/vIdHvUfbH79tD60+vAbDvQAAAAAAAAAAZiWuvHuGjLoD+Sg4dVImM3J6ajqinUO3AACAPwAAgD+a+Tk8ziizP8hAGz70+Rq+wW0wPLbMiD0AAAAAAAAAAGbqZrxI04C6tk40uF4iLbPPPly7mltSNwAAgD8AAIA/M/MqOlwrEbp2oYw5mhsMNAE9krolBaS4AACAPwAAgD+aHZm9v0oTP6J5YLy9LjS/XpEQvlMSsbsAAAAAAAAAAMDhyb0Ih68+sTuYPUyRE7/Prce9QdCmPQAAAAAAAAAA5qZEvkjzqD6pda0+WWgEv+FUDr6OWXM+AAAAAAAAAAAtgDU+g7I4P+LAUr3PGi2/6IeAPniph70AAAAAAAAAAID+WL3DgVa6tm7XOamU4bRBrUu5NkHlswAAAAAAAAAAAOi+PIW44LsFgUa+QFywvXLyRT33CJY+AACAPwAAgD/ALXs+QJ9XPws8zz6Etim/+oDOPp9/iT4AAAAAAAAAABrsIz0flMo8b7kEvtaqj758ccu9S7f0PAAAAAAAAAAAM7aiPTb1YbzbnmG+CxchPZJR1j1DHf69AACAPwAAgD+a5Vq8SBmeutKY5LqRRoS1wiQAO1a0AzoAAIA/AACAP5oz0bwpMAK6L4aEOT2LjzSPMsO6nYKeuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJZEona37WMAWyUS8CMAXSUR0DBYAnHBDXwdX2UKGgGR0Bx/cg2ZRbbaAdL3mgIR0DBYBJF7UobdX2UKGgGR0BxGfVwxWT5aAdLm2gIR0DBYBXTI/7jdX2UKGgGR0BzJL4oJAt4aAdLzGgIR0DBYCp0jkdWdX2UKGgGR0BwNCWcBltkaAdLu2gIR0DBYDL61stTdX2UKGgGR0BxdM88s+V1aAdLvGgIR0DBYDKqfe1sdX2UKGgGR0B0B5pyp71JaAdLt2gIR0DBYFT4UN8WdX2UKGgGR0BxgXWhAWzoaAdLx2gIR0DBYFZjFyaNdX2UKGgGR0Bwtvyc0+C9aAdLpWgIR0DBYFhk5IYndX2UKGgGR0BwCFPva11GaAdLtGgIR0DBYFnfQ8fWdX2UKGgGR0ByhNS5y2hJaAdLpWgIR0DBYGUcfeUIdX2UKGgGR0BxqYDgZTAGaAdLx2gIR0DBYHWd5IH1dX2UKGgGR0BxC6XpnpSraAdLpWgIR0DBYIaFuejEdX2UKGgGR0Bz4kd6sySFaAdL32gIR0DBYIfIIWxhdX2UKGgGR0BytL2L5ylvaAdLxmgIR0DBYIppDeCTdX2UKGgGR0BzoFzZHuqnaAdL4WgIR0DBYIyLXL/0dX2UKGgGR0Bx8EfjjrAyaAdLxWgIR0DBYJCAlOXWdX2UKGgGR0Byx9kf9xZMaAdLymgIR0DBYJ0qSX+mdX2UKGgGR0BzkPZcs189aAdLrmgIR0DBYKud07r+dX2UKGgGR0ByKbOJLuhLaAdLvmgIR0DBYK251/2CdX2UKGgGR0BzStjCpFTeaAdLxmgIR0DBYLpkCmuUdX2UKGgGR0Bxc8UfxMFmaAdLn2gIR0DBYMVLnLaFdX2UKGgGR0BydJIvrWy1aAdLrWgIR0DBYNCDAaegdX2UKGgGR0Bxp5UlzEJjaAdLmWgIR0DBYN5BE8aGdX2UKGgGR0ByfS1rqMWHaAdLzGgIR0DBYONhiLEUdX2UKGgGR0Byr1Gtp22YaAdL3mgIR0DBYO75CWu6dX2UKGgGR0BxHzItDlYEaAdLnmgIR0DBYPUGorFwdX2UKGgGR0BxzmWzF+/haAdL0GgIR0DBYPbsWweOdX2UKGgGR0BymCOtGNJfaAdN9gFoCEdAwWD4y4Wk8HV9lChoBkdAce3jOLR8dGgHS8JoCEdAwWELceKba3V9lChoBkdAcktDjBEa2mgHS6xoCEdAwWERT+ee4HV9lChoBkdAdCI7GNrCWWgHS8VoCEdAwWEWBcRlH3V9lChoBkdAc1Vgw482aWgHS+NoCEdAwWEj0L+glHV9lChoBkdAcVTDs+mm+GgHS7hoCEdAwWEng/C66XV9lChoBkdAcXIJEYwZfmgHS7poCEdAwWEqwBYFJXV9lChoBkdAcDMxgRbr1WgHS6poCEdAwWEtaY/mknV9lChoBkdAcs+4YJmdy2gHS6VoCEdAwWFNWaMJhXV9lChoBkdAcnTqMWGh3GgHS9VoCEdAwWFX7SiM53V9lChoBkdAcjmQMx46fmgHS8ZoCEdAwWFY9K28ZnV9lChoBkdAc1poXbdrPGgHS71oCEdAwWF1mwJPZnV9lChoBkdAc0t3NcGC7WgHS91oCEdAwWGDTI/7i3V9lChoBkdAcuok+HJtBWgHTWwBaAhHQMFhjpgLJCB1fZQoaAZHQHPO7gOz6adoB0vQaAhHQMFhj1u76Hl1fZQoaAZHQHMRx1xKg7JoB0vYaAhHQMFhkXj+7191fZQoaAZHQG/hKKHfuTloB0u3aAhHQMFhkn80k4Z1fZQoaAZHQHRWHDziCJ5oB0vjaAhHQMFhm1d5Y5l1fZQoaAZHQEc+UpNKyv9oB0traAhHQMFho8UVSGd1fZQoaAZHQHCEGmpEQXhoB0uZaAhHQMFhouQZGax1fZQoaAZHQG+qI/A0sOJoB0utaAhHQMFhpgP3BYV1fZQoaAZHQHKGJOJtSAJoB0vGaAhHQMFhqCLdepp1fZQoaAZHQHEMlkQPI4loB0vLaAhHQMFhvJGOMl11fZQoaAZHQHM5+psGgSRoB0vdaAhHQMFhzRISUTt1fZQoaAZHQHEGlaSs8xNoB0u3aAhHQMFh4AezUqh1fZQoaAZHQHI83VXmvGJoB0vSaAhHQMFh90LMLWt1fZQoaAZHQHBt9yDIzWRoB0u4aAhHQMFh/mT1TR91fZQoaAZHQHHz0bo8p1BoB0uraAhHQMFiAQXAM2F1fZQoaAZHQHC6ThHbypdoB0ueaAhHQMFiBOEM9bJ1fZQoaAZHQHH1gIQe3hJoB0vAaAhHQMFiG9uHerN1fZQoaAZHQHCIEfozN2VoB01wAWgIR0DBYiH4M4LkdX2UKGgGR0BwvyzPa+N+aAdLtWgIR0DBYiinNxEOdX2UKGgGR0Byb9VPva11aAdL0GgIR0DBYisl9jPOdX2UKGgGR0B0W23I+4b0aAdL3GgIR0DBYjAxzq8ldX2UKGgGR0Bxr4ZuQ6p6aAdLv2gIR0DBYjKYqoZRdX2UKGgGR0ByL8lt0mtyaAdL0mgIR0DBYjSs2eg+dX2UKGgGR0BxjTT/hl19aAdLx2gIR0DBYjWYlY2bdX2UKGgGR0By8jW1+iJwaAdL5GgIR0DBYkt7dBSldX2UKGgGR0BwAk9Mbm2caAdLuGgIR0DBYlMxh2GJdX2UKGgGR0BzE/5hz/6waAdLzmgIR0DBYlKfBeoldX2UKGgGR0BxJfs/pt78aAdLt2gIR0DBYmLdrO7hdX2UKGgGR0BxD4EGJN0vaAdLq2gIR0DBYnHYvnKXdX2UKGgGR0BxVW/zreImaAdLyWgIR0DBYoJ/b0vodX2UKGgGR0Byarq0MPSVaAdLy2gIR0DBYorW7OE/dX2UKGgGR0ByeXSsr/bTaAdLzWgIR0DBYo/hOxjbdX2UKGgGR0Bww1eTmnwYaAdLlmgIR0DBYpdnuiN9dX2UKGgGR0By2O06YE4eaAdLwGgIR0DBYpvZ26kJdX2UKGgGR0Bxricy31BdaAdLqmgIR0DBYqCyfL9udX2UKGgGR0Bymg+s5n14aAdLwmgIR0DBYqKdrftQdX2UKGgGR0ByWE8QqZtvaAdLxmgIR0DBYqs274BWdX2UKGgGR0ByAyqXF98aaAdLvGgIR0DBYq5R4yGjdX2UKGgGR0BzJYH+qBEsaAdLy2gIR0DBYrq+8Gs4dX2UKGgGR0BygubPQfITaAdLxWgIR0DBYtWS6lLwdX2UKGgGR0By7S5SWJJoaAdLyGgIR0DBYthPhybQdX2UKGgGR0ByGI36yjYaaAdNCQFoCEdAwWLZ2mHgxnV9lChoBkdAcaJs4T9KmWgHS7RoCEdAwWLcGNaQm3V9lChoBkdAc5ctOmBOHmgHS99oCEdAwWLf+kxh2HV9lChoBkdAcrvmlZX+2mgHS9BoCEdAwWMMbI91U3V9lChoBkdAch16KtPpIWgHS8NoCEdAwWMLyp71I3V9lChoBkdAckfgE2YOUmgHS5doCEdAwWMOn0Cih3V9lChoBkdAbm2JHiFTN2gHS8NoCEdAwWMQ2sq8UXV9lChoBkdAcMvhbW3BpGgHS8VoCEdAwWMZ7Kq4pnV9lChoBkdAc/skwevIO2gHS8FoCEdAwWMgU34sVnV9lChoBkdAcsrcHnlny2gHS8poCEdAwWMhxJ/XoXV9lChoBkdAchAjiGWUr2gHS8doCEdAwWMltKqXGHV9lChoBkdAcq9+NLlFMWgHS95oCEdAwWM/Sk0rLHV9lChoBkdAcihBzV+ZxGgHS6JoCEdAwWNDR64Ue3V9lChoBkdAcny3Qla8pWgHS65oCEdAwWNHUipvP3V9lChoBkdAcFamVJL/TGgHS7VoCEdAwWNOvHLidnV9lChoBkdAcj85+pfhM2gHS7VoCEdAwWNSUSIxg3V9lChoBkdAcQ5WH1vl2mgHS8doCEdAwWNhY8uBc3V9lChoBkdAcyd60IC2dGgHTYoBaAhHQMFjdxx1gYx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a720e380700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a720e380790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a720e380820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a720e3808b0>", "_build": "<function ActorCriticPolicy._build at 0x7a720e380940>", "forward": "<function ActorCriticPolicy.forward at 0x7a720e3809d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a720e380a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a720e380af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a720e380b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a720e380c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a720e380ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a720e380d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a720e512640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703238443168373186, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrDTr6tNmc/FiVmvlZSBL8WJpe+qiUdvAAAAAAAAAAAsxMoPc7Fuj/6VFQ+jTcCvsGhhz0gkLc9AAAAAAAAAAAzLzq9/FFFPiDvVr2tLJu+XHWXvddCLD0AAAAAAAAAAJq13zt2aiK82kTYPS+1VjwwKaW9Uf0zPQAAgD8AAIA/zQ54vCkUJ7oLlTQ8fjwDtUJJBDv2ggO0AAAAAAAAgD/tuTi+LREiPyZ6q7tZOuC+eD8Jvrra7D0AAAAAAAAAAGYXA72uVZS6JWZmOQ7iPLZRHYy3D6QztQAAAAAAAIA/msYvPhjriz8ixMA+q6WXvnK2sD4+XMI+AAAAAAAAAACNEUg+EmaPP11qJT5cAdm+h7UlP750jbwAAAAAAAAAAKanGz7WIJg/cgJYPtli274TSJo+EpAnvAAAAAAAAAAA5iwdvru29j6qngg+MK6rvoNqiL2d27o9AAAAAAAAAACAxmO+wcVmP4DSkb1O1dO+jl1SvsrrGT0AAAAAAAAAAIB9TL4HiDM/6llzvRed9b6RnG2+poTtPQAAAAAAAAAAM3taO8F3sj8XCZM9inJmvj8H1zowplg9AAAAAAAAAABmu628pFomu4YQJ7yi2ZY8ckoUPCbfgb0AAIA/AACAPzNZvbyr3Zc+Cw7YPJ5atL4Iwc47QjvxOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3b/82rGSMAWyUS+aMAXSUR0Cjl8FNUOurdX2UKGgGR0BwRlrqMWGiaAdLzmgIR0CjmAKpLmITdX2UKGgGR0ByQ6lN1yNoaAdL02gIR0CjmAyiM5wPdX2UKGgGR0BydEL+glF+aAdLx2gIR0CjmGfQ8fV7dX2UKGgGR0Bwv5y8zyjIaAdLzGgIR0CjmIR2B8QadX2UKGgGR0Bzr8k4WDYiaAdLy2gIR0CjmJGnO0LMdX2UKGgGR0BvA7hUBGQTaAdL2WgIR0CjmJAjIJZ4dX2UKGgGR0BxlrO8kD6naAdL0WgIR0CjmOBzV+ZxdX2UKGgGR0BwR640/GEPaAdLxmgIR0CjmPD1GsmwdX2UKGgGR0BxsNiI+GGmaAdL9GgIR0CjmQmeUY8/dX2UKGgGR0But1MCcPOIaAdLwmgIR0CjmRHnuAqedX2UKGgGR0Bwwmi48U22aAdL12gIR0CjmRPalDWtdX2UKGgGR0BypRiDujREaAdL2mgIR0CjmTRu89OidX2UKGgGR0BxNMtg8bJfaAdL0WgIR0CjmUXqzJIUdX2UKGgGR0By6F1mrbQDaAdL5GgIR0CjmaJvHcUNdX2UKGgGR0BulUrI5o4/aAdL3mgIR0CjmaiJ40MxdX2UKGgGR0By7P/0dzXCaAdL5mgIR0CjmitSydFwdX2UKGgGR0ByMxxZMcp9aAdL1mgIR0Cjmkfh/Aj6dX2UKGgGR0BtxgfyPMjeaAdL2mgIR0CjmknxJ/XodX2UKGgGR0BwjBAHE/B4aAdLz2gIR0CjmrToMa0hdX2UKGgGR0ByJ+R1X/5taAdL1WgIR0Cjmrmvnr6ddX2UKGgGR0ByNDQHAymAaAdNCgFoCEdAo5s9oakylHV9lChoBkdAbuBysCDEnGgHS81oCEdAo5tCOxSpBHV9lChoBkdAca65oGpuM2gHS+loCEdAo5tfIhhYvHV9lChoBkdAcCGaWX1J2GgHS9xoCEdAo5tmYrrgO3V9lChoBkdAcxelr/Khc2gHTQsBaAhHQKOba495hSd1fZQoaAZHQHM8wrYoRZloB0vsaAhHQKObed4FA3V1fZQoaAZHQHAVNTkyULVoB0vhaAhHQKObf3wCr951fZQoaAZHQG4vOU+s5n1oB0vZaAhHQKObjfm9xqB1fZQoaAZHQHLRDKDCgsdoB00MAWgIR0CjnDLMkhRqdX2UKGgGR0BxWnqNZNfxaAdL52gIR0CjnDMGHHmzdX2UKGgGR0ByfMJ0GNaRaAdNDwFoCEdAo5yqQiiZfHV9lChoBkdAcSbDF6zE8GgHS9loCEdAo5y1IbwSanV9lChoBkdAcRJad+Xqq2gHS9hoCEdAo5y0Bfa6BnV9lChoBkdAc7lX6ZYxL2gHS/NoCEdAo5zfta6jFnV9lChoBkdAcREeXiR4hWgHS9VoCEdAo50hW5painV9lChoBkdAc21xqO938mgHS9xoCEdAo51GbutwJnV9lChoBkdAcH0Kr7wazmgHS89oCEdAo530OI68x3V9lChoBkdAcCdh11W8y2gHS91oCEdAo539k4FRpHV9lChoBkdAcLM9x6v7nGgHS8NoCEdAo54BO+IuXnV9lChoBkdAcbwYYR/ViGgHS9VoCEdAo54v2TPjXHV9lChoBkdAcm1sI3R5T2gHS+5oCEdAo547SPU8WHV9lChoBkdAcRSYvWYnfGgHS9xoCEdAo55B0W/JvHV9lChoBkdAceoHpr1ui2gHS+hoCEdAo55MZJkGzXV9lChoBkdAcsJI8QqZt2gHS+ZoCEdAo55SdnTRY3V9lChoBkdAbd6N/e+EiGgHS9hoCEdAo58S5VfeDXV9lChoBkdAcVN5xR2r4mgHS/loCEdAo5+PnGKhtnV9lChoBkdAb6+1RceKbmgHS9doCEdAo5/Bqh11XHV9lChoBkdAcDvbJOnEVGgHS9FoCEdAo5/uDaoMrnV9lChoBkdAcVduGbkOqmgHS+poCEdAo6AC9VWCE3V9lChoBkdAcPIufmLcbmgHS8hoCEdAo6AXTmW+oXV9lChoBkdAcwPWZJCjUWgHS+VoCEdAo6C5QizLOnV9lChoBkdAcWIu63AmA2gHS8doCEdAo6D5akhzNnV9lChoBkdAcKKHdoFmnWgHS8doCEdAo6FVBv73wnV9lChoBkdAcT0gIyCWeGgHS+JoCEdAo6FnVZs9CHV9lChoBkdAbt6qQzUI9mgHS9FoCEdAo6FxbdJrcnV9lChoBkdAb8L8EV32VWgHS91oCEdAo6Gg3irDInV9lChoBkdAcf33Mpw0f2gHS+ZoCEdAo6G7Lr5ZbXV9lChoBkdAcXd54nndPGgHS/doCEdAo6HPt2LYPHV9lChoBkdAcScfBeokzGgHS/BoCEdAo6IR4Uvf0nV9lChoBkdAcNTSn+AEuGgHS7xoCEdAo6Lo4n4O+nV9lChoBkdAcXeIP9UCJWgHS+toCEdAo6LwHcDbJ3V9lChoBkdAcYbz7MxGlWgHS8RoCEdAo6MviR4hU3V9lChoBkdAcoOl5nlGPWgHS+NoCEdAo6M6pR4yGnV9lChoBkdAcJqU47zTW2gHS+doCEdAo6OKYG+sYHV9lChoBkdAcTlexwAEMmgHS+ZoCEdAo6QxfD1oQHV9lChoBkdAcjHANXo1UGgHS95oCEdAo6RNNlAeJnV9lChoBkdAbxxRVp9JBmgHS8VoCEdAo6R98G9pRHV9lChoBkdAcuysCkoF3mgHS9ZoCEdAo6SU4LkS3HV9lChoBkdAdCdYVIqb0GgHS95oCEdAo6Somb9ZR3V9lChoBkdAbzN93r2QGWgHS8hoCEdAo6Ti3w1BMXV9lChoBkdAcoSCSidrf2gHS9hoCEdAo6Tngk1MunV9lChoBkdAbmTRVIZqEmgHS+VoCEdAo6UDmOlwcnV9lChoBkdAcf6cI7eVLWgHTQMBaAhHQKOlGrELpiZ1fZQoaAZHQG9IWattALRoB0voaAhHQKOmD5zo2XN1fZQoaAZHQHKB+fRNRFZoB0vXaAhHQKOmMOp84Px1fZQoaAZHQHBSHu/k/8loB0vyaAhHQKOmj6dDpkh1fZQoaAZHQHJ1Rje9Ba9oB0vzaAhHQKOnCGTLW7R1fZQoaAZHQHAUesLfDUFoB0vSaAhHQKOnQu7pV0d1fZQoaAZHQG/WYwRGtp5oB0viaAhHQKOnoroW56N1fZQoaAZHQHN7aDCgsbxoB0vdaAhHQKOnxBjWkJt1fZQoaAZHQHJtpEMLF4toB0vDaAhHQKOn1b1yvLZ1fZQoaAZHQHJpC3kPtlZoB0vWaAhHQKOn2hkAggZ1fZQoaAZHQHE2YDTz/ZNoB0vfaAhHQKOn5z3AVO91fZQoaAZHQHGk9As052hoB0vNaAhHQKOoGU47zTZ1fZQoaAZHQHD73Ehq0t1oB0vtaAhHQKOos7/XGwR1fZQoaAZHQG/APX05EMNoB00AAWgIR0CjqL93bEgodX2UKGgGR0BxE9g+hXbNaAdLzGgIR0CjqUHQ6ZH/dX2UKGgGR0Bx5gelsP8RaAdL32gIR0Cjqa7Qb+98dX2UKGgGR0BwBBpVS4vwaAdL6mgIR0Cjqj2qDK5kdX2UKGgGR0ByI3PppvgnaAdLzmgIR0Cjqkl4cFQmdX2UKGgGR0BwN87ihnJ1aAdL7WgIR0CjqwiUPhAGdX2UKGgGR0ByBCkUKzAvaAdL2GgIR0CjqxIH1OCYdX2UKGgGR0Byt8KfFrEcaAdL3GgIR0Cjq0KZDzAfdX2UKGgGR0ByX/3225QQaAdL2mgIR0Cjq1z1kDp1dX2UKGgGR0BvHUAT7EYPaAdL4GgIR0Cjq2QyIpH7dX2UKGgGR0BvQJZbILgGaAdLz2gIR0Cjq2gzxgAqdX2UKGgGR0Bxgt87ZFodaAdL72gIR0Cjq596cAindX2UKGgGR0Bmt6ySmqHXaAdN6ANoCEdAo6vI1BMSK3V9lChoBkdAcHkswL3K0WgHS9FoCEdAo6v1i+cpb3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2080e4dc86835447a9f8520d1f4c6a76058a679b2f499eb48d8b09e2f9c5881
|
3 |
+
size 147948
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -94,6 +94,6 @@
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
98 |
}
|
99 |
}
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a720e380700>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a720e380790>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a720e380820>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a720e3808b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a720e380940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a720e3809d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a720e380a60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a720e380af0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a720e380b80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a720e380c10>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a720e380ca0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a720e380d30>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a720e512640>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 3014656,
|
25 |
+
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1703238443168373186,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrDTr6tNmc/FiVmvlZSBL8WJpe+qiUdvAAAAAAAAAAAsxMoPc7Fuj/6VFQ+jTcCvsGhhz0gkLc9AAAAAAAAAAAzLzq9/FFFPiDvVr2tLJu+XHWXvddCLD0AAAAAAAAAAJq13zt2aiK82kTYPS+1VjwwKaW9Uf0zPQAAgD8AAIA/zQ54vCkUJ7oLlTQ8fjwDtUJJBDv2ggO0AAAAAAAAgD/tuTi+LREiPyZ6q7tZOuC+eD8Jvrra7D0AAAAAAAAAAGYXA72uVZS6JWZmOQ7iPLZRHYy3D6QztQAAAAAAAIA/msYvPhjriz8ixMA+q6WXvnK2sD4+XMI+AAAAAAAAAACNEUg+EmaPP11qJT5cAdm+h7UlP750jbwAAAAAAAAAAKanGz7WIJg/cgJYPtli274TSJo+EpAnvAAAAAAAAAAA5iwdvru29j6qngg+MK6rvoNqiL2d27o9AAAAAAAAAACAxmO+wcVmP4DSkb1O1dO+jl1SvsrrGT0AAAAAAAAAAIB9TL4HiDM/6llzvRed9b6RnG2+poTtPQAAAAAAAAAAM3taO8F3sj8XCZM9inJmvj8H1zowplg9AAAAAAAAAABmu628pFomu4YQJ7yi2ZY8ckoUPCbfgb0AAIA/AACAPzNZvbyr3Zc+Cw7YPJ5atL4Iwc47QjvxOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3b/82rGSMAWyUS+aMAXSUR0Cjl8FNUOurdX2UKGgGR0BwRlrqMWGiaAdLzmgIR0CjmAKpLmITdX2UKGgGR0ByQ6lN1yNoaAdL02gIR0CjmAyiM5wPdX2UKGgGR0BydEL+glF+aAdLx2gIR0CjmGfQ8fV7dX2UKGgGR0Bwv5y8zyjIaAdLzGgIR0CjmIR2B8QadX2UKGgGR0Bzr8k4WDYiaAdLy2gIR0CjmJGnO0LMdX2UKGgGR0BvA7hUBGQTaAdL2WgIR0CjmJAjIJZ4dX2UKGgGR0BxlrO8kD6naAdL0WgIR0CjmOBzV+ZxdX2UKGgGR0BwR640/GEPaAdLxmgIR0CjmPD1GsmwdX2UKGgGR0BxsNiI+GGmaAdL9GgIR0CjmQmeUY8/dX2UKGgGR0But1MCcPOIaAdLwmgIR0CjmRHnuAqedX2UKGgGR0Bwwmi48U22aAdL12gIR0CjmRPalDWtdX2UKGgGR0BypRiDujREaAdL2mgIR0CjmTRu89OidX2UKGgGR0BxNMtg8bJfaAdL0WgIR0CjmUXqzJIUdX2UKGgGR0By6F1mrbQDaAdL5GgIR0CjmaJvHcUNdX2UKGgGR0BulUrI5o4/aAdL3mgIR0CjmaiJ40MxdX2UKGgGR0By7P/0dzXCaAdL5mgIR0CjmitSydFwdX2UKGgGR0ByMxxZMcp9aAdL1mgIR0Cjmkfh/Aj6dX2UKGgGR0BtxgfyPMjeaAdL2mgIR0CjmknxJ/XodX2UKGgGR0BwjBAHE/B4aAdLz2gIR0CjmrToMa0hdX2UKGgGR0ByJ+R1X/5taAdL1WgIR0Cjmrmvnr6ddX2UKGgGR0ByNDQHAymAaAdNCgFoCEdAo5s9oakylHV9lChoBkdAbuBysCDEnGgHS81oCEdAo5tCOxSpBHV9lChoBkdAca65oGpuM2gHS+loCEdAo5tfIhhYvHV9lChoBkdAcCGaWX1J2GgHS9xoCEdAo5tmYrrgO3V9lChoBkdAcxelr/Khc2gHTQsBaAhHQKOba495hSd1fZQoaAZHQHM8wrYoRZloB0vsaAhHQKObed4FA3V1fZQoaAZHQHAVNTkyULVoB0vhaAhHQKObf3wCr951fZQoaAZHQG4vOU+s5n1oB0vZaAhHQKObjfm9xqB1fZQoaAZHQHLRDKDCgsdoB00MAWgIR0CjnDLMkhRqdX2UKGgGR0BxWnqNZNfxaAdL52gIR0CjnDMGHHmzdX2UKGgGR0ByfMJ0GNaRaAdNDwFoCEdAo5yqQiiZfHV9lChoBkdAcSbDF6zE8GgHS9loCEdAo5y1IbwSanV9lChoBkdAcRJad+Xqq2gHS9hoCEdAo5y0Bfa6BnV9lChoBkdAc7lX6ZYxL2gHS/NoCEdAo5zfta6jFnV9lChoBkdAcREeXiR4hWgHS9VoCEdAo50hW5painV9lChoBkdAc21xqO938mgHS9xoCEdAo51GbutwJnV9lChoBkdAcH0Kr7wazmgHS89oCEdAo530OI68x3V9lChoBkdAcCdh11W8y2gHS91oCEdAo539k4FRpHV9lChoBkdAcLM9x6v7nGgHS8NoCEdAo54BO+IuXnV9lChoBkdAcbwYYR/ViGgHS9VoCEdAo54v2TPjXHV9lChoBkdAcm1sI3R5T2gHS+5oCEdAo547SPU8WHV9lChoBkdAcRSYvWYnfGgHS9xoCEdAo55B0W/JvHV9lChoBkdAceoHpr1ui2gHS+hoCEdAo55MZJkGzXV9lChoBkdAcsJI8QqZt2gHS+ZoCEdAo55SdnTRY3V9lChoBkdAbd6N/e+EiGgHS9hoCEdAo58S5VfeDXV9lChoBkdAcVN5xR2r4mgHS/loCEdAo5+PnGKhtnV9lChoBkdAb6+1RceKbmgHS9doCEdAo5/Bqh11XHV9lChoBkdAcDvbJOnEVGgHS9FoCEdAo5/uDaoMrnV9lChoBkdAcVduGbkOqmgHS+poCEdAo6AC9VWCE3V9lChoBkdAcPIufmLcbmgHS8hoCEdAo6AXTmW+oXV9lChoBkdAcwPWZJCjUWgHS+VoCEdAo6C5QizLOnV9lChoBkdAcWIu63AmA2gHS8doCEdAo6D5akhzNnV9lChoBkdAcKKHdoFmnWgHS8doCEdAo6FVBv73wnV9lChoBkdAcT0gIyCWeGgHS+JoCEdAo6FnVZs9CHV9lChoBkdAbt6qQzUI9mgHS9FoCEdAo6FxbdJrcnV9lChoBkdAb8L8EV32VWgHS91oCEdAo6Gg3irDInV9lChoBkdAcf33Mpw0f2gHS+ZoCEdAo6G7Lr5ZbXV9lChoBkdAcXd54nndPGgHS/doCEdAo6HPt2LYPHV9lChoBkdAcScfBeokzGgHS/BoCEdAo6IR4Uvf0nV9lChoBkdAcNTSn+AEuGgHS7xoCEdAo6Lo4n4O+nV9lChoBkdAcXeIP9UCJWgHS+toCEdAo6LwHcDbJ3V9lChoBkdAcYbz7MxGlWgHS8RoCEdAo6MviR4hU3V9lChoBkdAcoOl5nlGPWgHS+NoCEdAo6M6pR4yGnV9lChoBkdAcJqU47zTW2gHS+doCEdAo6OKYG+sYHV9lChoBkdAcTlexwAEMmgHS+ZoCEdAo6QxfD1oQHV9lChoBkdAcjHANXo1UGgHS95oCEdAo6RNNlAeJnV9lChoBkdAbxxRVp9JBmgHS8VoCEdAo6R98G9pRHV9lChoBkdAcuysCkoF3mgHS9ZoCEdAo6SU4LkS3HV9lChoBkdAdCdYVIqb0GgHS95oCEdAo6Somb9ZR3V9lChoBkdAbzN93r2QGWgHS8hoCEdAo6Ti3w1BMXV9lChoBkdAcoSCSidrf2gHS9hoCEdAo6Tngk1MunV9lChoBkdAbmTRVIZqEmgHS+VoCEdAo6UDmOlwcnV9lChoBkdAcf6cI7eVLWgHTQMBaAhHQKOlGrELpiZ1fZQoaAZHQG9IWattALRoB0voaAhHQKOmD5zo2XN1fZQoaAZHQHKB+fRNRFZoB0vXaAhHQKOmMOp84Px1fZQoaAZHQHBSHu/k/8loB0vyaAhHQKOmj6dDpkh1fZQoaAZHQHJ1Rje9Ba9oB0vzaAhHQKOnCGTLW7R1fZQoaAZHQHAUesLfDUFoB0vSaAhHQKOnQu7pV0d1fZQoaAZHQG/WYwRGtp5oB0viaAhHQKOnoroW56N1fZQoaAZHQHN7aDCgsbxoB0vdaAhHQKOnxBjWkJt1fZQoaAZHQHJtpEMLF4toB0vDaAhHQKOn1b1yvLZ1fZQoaAZHQHJpC3kPtlZoB0vWaAhHQKOn2hkAggZ1fZQoaAZHQHE2YDTz/ZNoB0vfaAhHQKOn5z3AVO91fZQoaAZHQHGk9As052hoB0vNaAhHQKOoGU47zTZ1fZQoaAZHQHD73Ehq0t1oB0vtaAhHQKOos7/XGwR1fZQoaAZHQG/APX05EMNoB00AAWgIR0CjqL93bEgodX2UKGgGR0BxE9g+hXbNaAdLzGgIR0CjqUHQ6ZH/dX2UKGgGR0Bx5gelsP8RaAdL32gIR0Cjqa7Qb+98dX2UKGgGR0BwBBpVS4vwaAdL6mgIR0Cjqj2qDK5kdX2UKGgGR0ByI3PppvgnaAdLzmgIR0Cjqkl4cFQmdX2UKGgGR0BwN87ihnJ1aAdL7WgIR0CjqwiUPhAGdX2UKGgGR0ByBCkUKzAvaAdL2GgIR0CjqxIH1OCYdX2UKGgGR0Byt8KfFrEcaAdL3GgIR0Cjq0KZDzAfdX2UKGgGR0ByX/3225QQaAdL2mgIR0Cjq1z1kDp1dX2UKGgGR0BvHUAT7EYPaAdL4GgIR0Cjq2QyIpH7dX2UKGgGR0BvQJZbILgGaAdLz2gIR0Cjq2gzxgAqdX2UKGgGR0Bxgt87ZFodaAdL72gIR0Cjq596cAindX2UKGgGR0Bmt6ySmqHXaAdN6ANoCEdAo6vI1BMSK3V9lChoBkdAcHkswL3K0WgHS9FoCEdAo6v1i+cpb3VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 368,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
94 |
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
}
|
99 |
}
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d15a2c7a4f059b88f50aa4a7623a37b4f4a6fb0e4578bc00b655987f037a3c18
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:706abf0c6060279d4f2e4d25b866a411bfbd9adabbff1a8fab30972d23f88e8b
|
3 |
size 43762
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
-
- PyTorch: 2.1.0+
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
- GPU Enabled: True
|
6 |
- Numpy: 1.23.5
|
7 |
- Cloudpickle: 2.2.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"mean_reward": 273.85990149097853, "std_reward": 15.19286703767183, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-22T10:33:50.051219"}
|