enaitzb commited on
Commit
28d86e4
·
1 Parent(s): 9dbd4ce

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -143.46 +/- 94.25
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'PPO'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'enaitzb/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 273.86 +/- 15.19
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7861ec122cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7861ec122d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7861ec122dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7861ec122e60>", "_build": "<function ActorCriticPolicy._build at 0x7861ec122ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7861ec122f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7861ec123010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7861ec1230a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7861ec123130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7861ec1231c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7861ec123250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7861ec1232e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7861ec2b7e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700582021203888267, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBvhT7VgR4/vIdHvUfbH79tD60+vAbDvQAAAAAAAAAAZiWuvHuGjLoD+Sg4dVImM3J6ajqinUO3AACAPwAAgD+a+Tk8ziizP8hAGz70+Rq+wW0wPLbMiD0AAAAAAAAAAGbqZrxI04C6tk40uF4iLbPPPly7mltSNwAAgD8AAIA/M/MqOlwrEbp2oYw5mhsMNAE9krolBaS4AACAPwAAgD+aHZm9v0oTP6J5YLy9LjS/XpEQvlMSsbsAAAAAAAAAAMDhyb0Ih68+sTuYPUyRE7/Prce9QdCmPQAAAAAAAAAA5qZEvkjzqD6pda0+WWgEv+FUDr6OWXM+AAAAAAAAAAAtgDU+g7I4P+LAUr3PGi2/6IeAPniph70AAAAAAAAAAID+WL3DgVa6tm7XOamU4bRBrUu5NkHlswAAAAAAAAAAAOi+PIW44LsFgUa+QFywvXLyRT33CJY+AACAPwAAgD/ALXs+QJ9XPws8zz6Etim/+oDOPp9/iT4AAAAAAAAAABrsIz0flMo8b7kEvtaqj758ccu9S7f0PAAAAAAAAAAAM7aiPTb1YbzbnmG+CxchPZJR1j1DHf69AACAPwAAgD+a5Vq8SBmeutKY5LqRRoS1wiQAO1a0AzoAAIA/AACAP5oz0bwpMAK6L4aEOT2LjzSPMsO6nYKeuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJZEona37WMAWyUS8CMAXSUR0DBYAnHBDXwdX2UKGgGR0Bx/cg2ZRbbaAdL3mgIR0DBYBJF7UobdX2UKGgGR0BxGfVwxWT5aAdLm2gIR0DBYBXTI/7jdX2UKGgGR0BzJL4oJAt4aAdLzGgIR0DBYCp0jkdWdX2UKGgGR0BwNCWcBltkaAdLu2gIR0DBYDL61stTdX2UKGgGR0BxdM88s+V1aAdLvGgIR0DBYDKqfe1sdX2UKGgGR0B0B5pyp71JaAdLt2gIR0DBYFT4UN8WdX2UKGgGR0BxgXWhAWzoaAdLx2gIR0DBYFZjFyaNdX2UKGgGR0Bwtvyc0+C9aAdLpWgIR0DBYFhk5IYndX2UKGgGR0BwCFPva11GaAdLtGgIR0DBYFnfQ8fWdX2UKGgGR0ByhNS5y2hJaAdLpWgIR0DBYGUcfeUIdX2UKGgGR0BxqYDgZTAGaAdLx2gIR0DBYHWd5IH1dX2UKGgGR0BxC6XpnpSraAdLpWgIR0DBYIaFuejEdX2UKGgGR0Bz4kd6sySFaAdL32gIR0DBYIfIIWxhdX2UKGgGR0BytL2L5ylvaAdLxmgIR0DBYIppDeCTdX2UKGgGR0BzoFzZHuqnaAdL4WgIR0DBYIyLXL/0dX2UKGgGR0Bx8EfjjrAyaAdLxWgIR0DBYJCAlOXWdX2UKGgGR0Byx9kf9xZMaAdLymgIR0DBYJ0qSX+mdX2UKGgGR0BzkPZcs189aAdLrmgIR0DBYKud07r+dX2UKGgGR0ByKbOJLuhLaAdLvmgIR0DBYK251/2CdX2UKGgGR0BzStjCpFTeaAdLxmgIR0DBYLpkCmuUdX2UKGgGR0Bxc8UfxMFmaAdLn2gIR0DBYMVLnLaFdX2UKGgGR0BydJIvrWy1aAdLrWgIR0DBYNCDAaegdX2UKGgGR0Bxp5UlzEJjaAdLmWgIR0DBYN5BE8aGdX2UKGgGR0ByfS1rqMWHaAdLzGgIR0DBYONhiLEUdX2UKGgGR0Byr1Gtp22YaAdL3mgIR0DBYO75CWu6dX2UKGgGR0BxHzItDlYEaAdLnmgIR0DBYPUGorFwdX2UKGgGR0BxzmWzF+/haAdL0GgIR0DBYPbsWweOdX2UKGgGR0BymCOtGNJfaAdN9gFoCEdAwWD4y4Wk8HV9lChoBkdAce3jOLR8dGgHS8JoCEdAwWELceKba3V9lChoBkdAcktDjBEa2mgHS6xoCEdAwWERT+ee4HV9lChoBkdAdCI7GNrCWWgHS8VoCEdAwWEWBcRlH3V9lChoBkdAc1Vgw482aWgHS+NoCEdAwWEj0L+glHV9lChoBkdAcVTDs+mm+GgHS7hoCEdAwWEng/C66XV9lChoBkdAcXIJEYwZfmgHS7poCEdAwWEqwBYFJXV9lChoBkdAcDMxgRbr1WgHS6poCEdAwWEtaY/mknV9lChoBkdAcs+4YJmdy2gHS6VoCEdAwWFNWaMJhXV9lChoBkdAcnTqMWGh3GgHS9VoCEdAwWFX7SiM53V9lChoBkdAcjmQMx46fmgHS8ZoCEdAwWFY9K28ZnV9lChoBkdAc1poXbdrPGgHS71oCEdAwWF1mwJPZnV9lChoBkdAc0t3NcGC7WgHS91oCEdAwWGDTI/7i3V9lChoBkdAcuok+HJtBWgHTWwBaAhHQMFhjpgLJCB1fZQoaAZHQHPO7gOz6adoB0vQaAhHQMFhj1u76Hl1fZQoaAZHQHMRx1xKg7JoB0vYaAhHQMFhkXj+7191fZQoaAZHQG/hKKHfuTloB0u3aAhHQMFhkn80k4Z1fZQoaAZHQHRWHDziCJ5oB0vjaAhHQMFhm1d5Y5l1fZQoaAZHQEc+UpNKyv9oB0traAhHQMFho8UVSGd1fZQoaAZHQHCEGmpEQXhoB0uZaAhHQMFhouQZGax1fZQoaAZHQG+qI/A0sOJoB0utaAhHQMFhpgP3BYV1fZQoaAZHQHKGJOJtSAJoB0vGaAhHQMFhqCLdepp1fZQoaAZHQHEMlkQPI4loB0vLaAhHQMFhvJGOMl11fZQoaAZHQHM5+psGgSRoB0vdaAhHQMFhzRISUTt1fZQoaAZHQHEGlaSs8xNoB0u3aAhHQMFh4AezUqh1fZQoaAZHQHI83VXmvGJoB0vSaAhHQMFh90LMLWt1fZQoaAZHQHBt9yDIzWRoB0u4aAhHQMFh/mT1TR91fZQoaAZHQHHz0bo8p1BoB0uraAhHQMFiAQXAM2F1fZQoaAZHQHC6ThHbypdoB0ueaAhHQMFiBOEM9bJ1fZQoaAZHQHH1gIQe3hJoB0vAaAhHQMFiG9uHerN1fZQoaAZHQHCIEfozN2VoB01wAWgIR0DBYiH4M4LkdX2UKGgGR0BwvyzPa+N+aAdLtWgIR0DBYiinNxEOdX2UKGgGR0Byb9VPva11aAdL0GgIR0DBYisl9jPOdX2UKGgGR0B0W23I+4b0aAdL3GgIR0DBYjAxzq8ldX2UKGgGR0Bxr4ZuQ6p6aAdLv2gIR0DBYjKYqoZRdX2UKGgGR0ByL8lt0mtyaAdL0mgIR0DBYjSs2eg+dX2UKGgGR0BxjTT/hl19aAdLx2gIR0DBYjWYlY2bdX2UKGgGR0By8jW1+iJwaAdL5GgIR0DBYkt7dBSldX2UKGgGR0BwAk9Mbm2caAdLuGgIR0DBYlMxh2GJdX2UKGgGR0BzE/5hz/6waAdLzmgIR0DBYlKfBeoldX2UKGgGR0BxJfs/pt78aAdLt2gIR0DBYmLdrO7hdX2UKGgGR0BxD4EGJN0vaAdLq2gIR0DBYnHYvnKXdX2UKGgGR0BxVW/zreImaAdLyWgIR0DBYoJ/b0vodX2UKGgGR0Byarq0MPSVaAdLy2gIR0DBYorW7OE/dX2UKGgGR0ByeXSsr/bTaAdLzWgIR0DBYo/hOxjbdX2UKGgGR0Bww1eTmnwYaAdLlmgIR0DBYpdnuiN9dX2UKGgGR0By2O06YE4eaAdLwGgIR0DBYpvZ26kJdX2UKGgGR0Bxricy31BdaAdLqmgIR0DBYqCyfL9udX2UKGgGR0Bymg+s5n14aAdLwmgIR0DBYqKdrftQdX2UKGgGR0ByWE8QqZtvaAdLxmgIR0DBYqs274BWdX2UKGgGR0ByAyqXF98aaAdLvGgIR0DBYq5R4yGjdX2UKGgGR0BzJYH+qBEsaAdLy2gIR0DBYrq+8Gs4dX2UKGgGR0BygubPQfITaAdLxWgIR0DBYtWS6lLwdX2UKGgGR0By7S5SWJJoaAdLyGgIR0DBYthPhybQdX2UKGgGR0ByGI36yjYaaAdNCQFoCEdAwWLZ2mHgxnV9lChoBkdAcaJs4T9KmWgHS7RoCEdAwWLcGNaQm3V9lChoBkdAc5ctOmBOHmgHS99oCEdAwWLf+kxh2HV9lChoBkdAcrvmlZX+2mgHS9BoCEdAwWMMbI91U3V9lChoBkdAch16KtPpIWgHS8NoCEdAwWMLyp71I3V9lChoBkdAckfgE2YOUmgHS5doCEdAwWMOn0Cih3V9lChoBkdAbm2JHiFTN2gHS8NoCEdAwWMQ2sq8UXV9lChoBkdAcMvhbW3BpGgHS8VoCEdAwWMZ7Kq4pnV9lChoBkdAc/skwevIO2gHS8FoCEdAwWMgU34sVnV9lChoBkdAcsrcHnlny2gHS8poCEdAwWMhxJ/XoXV9lChoBkdAchAjiGWUr2gHS8doCEdAwWMltKqXGHV9lChoBkdAcq9+NLlFMWgHS95oCEdAwWM/Sk0rLHV9lChoBkdAcihBzV+ZxGgHS6JoCEdAwWNDR64Ue3V9lChoBkdAcny3Qla8pWgHS65oCEdAwWNHUipvP3V9lChoBkdAcFamVJL/TGgHS7VoCEdAwWNOvHLidnV9lChoBkdAcj85+pfhM2gHS7VoCEdAwWNSUSIxg3V9lChoBkdAcQ5WH1vl2mgHS8doCEdAwWNhY8uBc3V9lChoBkdAcyd60IC2dGgHTYoBaAhHQMFjdxx1gYx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a720e380700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a720e380790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a720e380820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a720e3808b0>", "_build": "<function ActorCriticPolicy._build at 0x7a720e380940>", "forward": "<function ActorCriticPolicy.forward at 0x7a720e3809d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a720e380a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a720e380af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a720e380b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a720e380c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a720e380ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a720e380d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a720e512640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703238443168373186, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrDTr6tNmc/FiVmvlZSBL8WJpe+qiUdvAAAAAAAAAAAsxMoPc7Fuj/6VFQ+jTcCvsGhhz0gkLc9AAAAAAAAAAAzLzq9/FFFPiDvVr2tLJu+XHWXvddCLD0AAAAAAAAAAJq13zt2aiK82kTYPS+1VjwwKaW9Uf0zPQAAgD8AAIA/zQ54vCkUJ7oLlTQ8fjwDtUJJBDv2ggO0AAAAAAAAgD/tuTi+LREiPyZ6q7tZOuC+eD8Jvrra7D0AAAAAAAAAAGYXA72uVZS6JWZmOQ7iPLZRHYy3D6QztQAAAAAAAIA/msYvPhjriz8ixMA+q6WXvnK2sD4+XMI+AAAAAAAAAACNEUg+EmaPP11qJT5cAdm+h7UlP750jbwAAAAAAAAAAKanGz7WIJg/cgJYPtli274TSJo+EpAnvAAAAAAAAAAA5iwdvru29j6qngg+MK6rvoNqiL2d27o9AAAAAAAAAACAxmO+wcVmP4DSkb1O1dO+jl1SvsrrGT0AAAAAAAAAAIB9TL4HiDM/6llzvRed9b6RnG2+poTtPQAAAAAAAAAAM3taO8F3sj8XCZM9inJmvj8H1zowplg9AAAAAAAAAABmu628pFomu4YQJ7yi2ZY8ckoUPCbfgb0AAIA/AACAPzNZvbyr3Zc+Cw7YPJ5atL4Iwc47QjvxOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3b/82rGSMAWyUS+aMAXSUR0Cjl8FNUOurdX2UKGgGR0BwRlrqMWGiaAdLzmgIR0CjmAKpLmITdX2UKGgGR0ByQ6lN1yNoaAdL02gIR0CjmAyiM5wPdX2UKGgGR0BydEL+glF+aAdLx2gIR0CjmGfQ8fV7dX2UKGgGR0Bwv5y8zyjIaAdLzGgIR0CjmIR2B8QadX2UKGgGR0Bzr8k4WDYiaAdLy2gIR0CjmJGnO0LMdX2UKGgGR0BvA7hUBGQTaAdL2WgIR0CjmJAjIJZ4dX2UKGgGR0BxlrO8kD6naAdL0WgIR0CjmOBzV+ZxdX2UKGgGR0BwR640/GEPaAdLxmgIR0CjmPD1GsmwdX2UKGgGR0BxsNiI+GGmaAdL9GgIR0CjmQmeUY8/dX2UKGgGR0But1MCcPOIaAdLwmgIR0CjmRHnuAqedX2UKGgGR0Bwwmi48U22aAdL12gIR0CjmRPalDWtdX2UKGgGR0BypRiDujREaAdL2mgIR0CjmTRu89OidX2UKGgGR0BxNMtg8bJfaAdL0WgIR0CjmUXqzJIUdX2UKGgGR0By6F1mrbQDaAdL5GgIR0CjmaJvHcUNdX2UKGgGR0BulUrI5o4/aAdL3mgIR0CjmaiJ40MxdX2UKGgGR0By7P/0dzXCaAdL5mgIR0CjmitSydFwdX2UKGgGR0ByMxxZMcp9aAdL1mgIR0Cjmkfh/Aj6dX2UKGgGR0BtxgfyPMjeaAdL2mgIR0CjmknxJ/XodX2UKGgGR0BwjBAHE/B4aAdLz2gIR0CjmrToMa0hdX2UKGgGR0ByJ+R1X/5taAdL1WgIR0Cjmrmvnr6ddX2UKGgGR0ByNDQHAymAaAdNCgFoCEdAo5s9oakylHV9lChoBkdAbuBysCDEnGgHS81oCEdAo5tCOxSpBHV9lChoBkdAca65oGpuM2gHS+loCEdAo5tfIhhYvHV9lChoBkdAcCGaWX1J2GgHS9xoCEdAo5tmYrrgO3V9lChoBkdAcxelr/Khc2gHTQsBaAhHQKOba495hSd1fZQoaAZHQHM8wrYoRZloB0vsaAhHQKObed4FA3V1fZQoaAZHQHAVNTkyULVoB0vhaAhHQKObf3wCr951fZQoaAZHQG4vOU+s5n1oB0vZaAhHQKObjfm9xqB1fZQoaAZHQHLRDKDCgsdoB00MAWgIR0CjnDLMkhRqdX2UKGgGR0BxWnqNZNfxaAdL52gIR0CjnDMGHHmzdX2UKGgGR0ByfMJ0GNaRaAdNDwFoCEdAo5yqQiiZfHV9lChoBkdAcSbDF6zE8GgHS9loCEdAo5y1IbwSanV9lChoBkdAcRJad+Xqq2gHS9hoCEdAo5y0Bfa6BnV9lChoBkdAc7lX6ZYxL2gHS/NoCEdAo5zfta6jFnV9lChoBkdAcREeXiR4hWgHS9VoCEdAo50hW5painV9lChoBkdAc21xqO938mgHS9xoCEdAo51GbutwJnV9lChoBkdAcH0Kr7wazmgHS89oCEdAo530OI68x3V9lChoBkdAcCdh11W8y2gHS91oCEdAo539k4FRpHV9lChoBkdAcLM9x6v7nGgHS8NoCEdAo54BO+IuXnV9lChoBkdAcbwYYR/ViGgHS9VoCEdAo54v2TPjXHV9lChoBkdAcm1sI3R5T2gHS+5oCEdAo547SPU8WHV9lChoBkdAcRSYvWYnfGgHS9xoCEdAo55B0W/JvHV9lChoBkdAceoHpr1ui2gHS+hoCEdAo55MZJkGzXV9lChoBkdAcsJI8QqZt2gHS+ZoCEdAo55SdnTRY3V9lChoBkdAbd6N/e+EiGgHS9hoCEdAo58S5VfeDXV9lChoBkdAcVN5xR2r4mgHS/loCEdAo5+PnGKhtnV9lChoBkdAb6+1RceKbmgHS9doCEdAo5/Bqh11XHV9lChoBkdAcDvbJOnEVGgHS9FoCEdAo5/uDaoMrnV9lChoBkdAcVduGbkOqmgHS+poCEdAo6AC9VWCE3V9lChoBkdAcPIufmLcbmgHS8hoCEdAo6AXTmW+oXV9lChoBkdAcwPWZJCjUWgHS+VoCEdAo6C5QizLOnV9lChoBkdAcWIu63AmA2gHS8doCEdAo6D5akhzNnV9lChoBkdAcKKHdoFmnWgHS8doCEdAo6FVBv73wnV9lChoBkdAcT0gIyCWeGgHS+JoCEdAo6FnVZs9CHV9lChoBkdAbt6qQzUI9mgHS9FoCEdAo6FxbdJrcnV9lChoBkdAb8L8EV32VWgHS91oCEdAo6Gg3irDInV9lChoBkdAcf33Mpw0f2gHS+ZoCEdAo6G7Lr5ZbXV9lChoBkdAcXd54nndPGgHS/doCEdAo6HPt2LYPHV9lChoBkdAcScfBeokzGgHS/BoCEdAo6IR4Uvf0nV9lChoBkdAcNTSn+AEuGgHS7xoCEdAo6Lo4n4O+nV9lChoBkdAcXeIP9UCJWgHS+toCEdAo6LwHcDbJ3V9lChoBkdAcYbz7MxGlWgHS8RoCEdAo6MviR4hU3V9lChoBkdAcoOl5nlGPWgHS+NoCEdAo6M6pR4yGnV9lChoBkdAcJqU47zTW2gHS+doCEdAo6OKYG+sYHV9lChoBkdAcTlexwAEMmgHS+ZoCEdAo6QxfD1oQHV9lChoBkdAcjHANXo1UGgHS95oCEdAo6RNNlAeJnV9lChoBkdAbxxRVp9JBmgHS8VoCEdAo6R98G9pRHV9lChoBkdAcuysCkoF3mgHS9ZoCEdAo6SU4LkS3HV9lChoBkdAdCdYVIqb0GgHS95oCEdAo6Somb9ZR3V9lChoBkdAbzN93r2QGWgHS8hoCEdAo6Ti3w1BMXV9lChoBkdAcoSCSidrf2gHS9hoCEdAo6Tngk1MunV9lChoBkdAbmTRVIZqEmgHS+VoCEdAo6UDmOlwcnV9lChoBkdAcf6cI7eVLWgHTQMBaAhHQKOlGrELpiZ1fZQoaAZHQG9IWattALRoB0voaAhHQKOmD5zo2XN1fZQoaAZHQHKB+fRNRFZoB0vXaAhHQKOmMOp84Px1fZQoaAZHQHBSHu/k/8loB0vyaAhHQKOmj6dDpkh1fZQoaAZHQHJ1Rje9Ba9oB0vzaAhHQKOnCGTLW7R1fZQoaAZHQHAUesLfDUFoB0vSaAhHQKOnQu7pV0d1fZQoaAZHQG/WYwRGtp5oB0viaAhHQKOnoroW56N1fZQoaAZHQHN7aDCgsbxoB0vdaAhHQKOnxBjWkJt1fZQoaAZHQHJtpEMLF4toB0vDaAhHQKOn1b1yvLZ1fZQoaAZHQHJpC3kPtlZoB0vWaAhHQKOn2hkAggZ1fZQoaAZHQHE2YDTz/ZNoB0vfaAhHQKOn5z3AVO91fZQoaAZHQHGk9As052hoB0vNaAhHQKOoGU47zTZ1fZQoaAZHQHD73Ehq0t1oB0vtaAhHQKOos7/XGwR1fZQoaAZHQG/APX05EMNoB00AAWgIR0CjqL93bEgodX2UKGgGR0BxE9g+hXbNaAdLzGgIR0CjqUHQ6ZH/dX2UKGgGR0Bx5gelsP8RaAdL32gIR0Cjqa7Qb+98dX2UKGgGR0BwBBpVS4vwaAdL6mgIR0Cjqj2qDK5kdX2UKGgGR0ByI3PppvgnaAdLzmgIR0Cjqkl4cFQmdX2UKGgGR0BwN87ihnJ1aAdL7WgIR0CjqwiUPhAGdX2UKGgGR0ByBCkUKzAvaAdL2GgIR0CjqxIH1OCYdX2UKGgGR0Byt8KfFrEcaAdL3GgIR0Cjq0KZDzAfdX2UKGgGR0ByX/3225QQaAdL2mgIR0Cjq1z1kDp1dX2UKGgGR0BvHUAT7EYPaAdL4GgIR0Cjq2QyIpH7dX2UKGgGR0BvQJZbILgGaAdLz2gIR0Cjq2gzxgAqdX2UKGgGR0Bxgt87ZFodaAdL72gIR0Cjq596cAindX2UKGgGR0Bmt6ySmqHXaAdN6ANoCEdAo6vI1BMSK3V9lChoBkdAcHkswL3K0WgHS9FoCEdAo6v1i+cpb3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:16b4e7b0d80561e1cc4368bc0b062d9b1253cbe3275cfb59d604b8af7ac90515
3
- size 147929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2080e4dc86835447a9f8520d1f4c6a76058a679b2f499eb48d8b09e2f9c5881
3
+ size 147948
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7861ec122cb0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7861ec122d40>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7861ec122dd0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7861ec122e60>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7861ec122ef0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7861ec122f80>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7861ec123010>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7861ec1230a0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7861ec123130>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7861ec1231c0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7861ec123250>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7861ec1232e0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7861ec2b7e00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 2031616,
25
- "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1700582021203888267,
30
- "learning_rate": 0.001,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBvhT7VgR4/vIdHvUfbH79tD60+vAbDvQAAAAAAAAAAZiWuvHuGjLoD+Sg4dVImM3J6ajqinUO3AACAPwAAgD+a+Tk8ziizP8hAGz70+Rq+wW0wPLbMiD0AAAAAAAAAAGbqZrxI04C6tk40uF4iLbPPPly7mltSNwAAgD8AAIA/M/MqOlwrEbp2oYw5mhsMNAE9krolBaS4AACAPwAAgD+aHZm9v0oTP6J5YLy9LjS/XpEQvlMSsbsAAAAAAAAAAMDhyb0Ih68+sTuYPUyRE7/Prce9QdCmPQAAAAAAAAAA5qZEvkjzqD6pda0+WWgEv+FUDr6OWXM+AAAAAAAAAAAtgDU+g7I4P+LAUr3PGi2/6IeAPniph70AAAAAAAAAAID+WL3DgVa6tm7XOamU4bRBrUu5NkHlswAAAAAAAAAAAOi+PIW44LsFgUa+QFywvXLyRT33CJY+AACAPwAAgD/ALXs+QJ9XPws8zz6Etim/+oDOPp9/iT4AAAAAAAAAABrsIz0flMo8b7kEvtaqj758ccu9S7f0PAAAAAAAAAAAM7aiPTb1YbzbnmG+CxchPZJR1j1DHf69AACAPwAAgD+a5Vq8SBmeutKY5LqRRoS1wiQAO1a0AzoAAIA/AACAP5oz0bwpMAK6L4aEOT2LjzSPMsO6nYKeuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV5QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJZEona37WMAWyUS8CMAXSUR0DBYAnHBDXwdX2UKGgGR0Bx/cg2ZRbbaAdL3mgIR0DBYBJF7UobdX2UKGgGR0BxGfVwxWT5aAdLm2gIR0DBYBXTI/7jdX2UKGgGR0BzJL4oJAt4aAdLzGgIR0DBYCp0jkdWdX2UKGgGR0BwNCWcBltkaAdLu2gIR0DBYDL61stTdX2UKGgGR0BxdM88s+V1aAdLvGgIR0DBYDKqfe1sdX2UKGgGR0B0B5pyp71JaAdLt2gIR0DBYFT4UN8WdX2UKGgGR0BxgXWhAWzoaAdLx2gIR0DBYFZjFyaNdX2UKGgGR0Bwtvyc0+C9aAdLpWgIR0DBYFhk5IYndX2UKGgGR0BwCFPva11GaAdLtGgIR0DBYFnfQ8fWdX2UKGgGR0ByhNS5y2hJaAdLpWgIR0DBYGUcfeUIdX2UKGgGR0BxqYDgZTAGaAdLx2gIR0DBYHWd5IH1dX2UKGgGR0BxC6XpnpSraAdLpWgIR0DBYIaFuejEdX2UKGgGR0Bz4kd6sySFaAdL32gIR0DBYIfIIWxhdX2UKGgGR0BytL2L5ylvaAdLxmgIR0DBYIppDeCTdX2UKGgGR0BzoFzZHuqnaAdL4WgIR0DBYIyLXL/0dX2UKGgGR0Bx8EfjjrAyaAdLxWgIR0DBYJCAlOXWdX2UKGgGR0Byx9kf9xZMaAdLymgIR0DBYJ0qSX+mdX2UKGgGR0BzkPZcs189aAdLrmgIR0DBYKud07r+dX2UKGgGR0ByKbOJLuhLaAdLvmgIR0DBYK251/2CdX2UKGgGR0BzStjCpFTeaAdLxmgIR0DBYLpkCmuUdX2UKGgGR0Bxc8UfxMFmaAdLn2gIR0DBYMVLnLaFdX2UKGgGR0BydJIvrWy1aAdLrWgIR0DBYNCDAaegdX2UKGgGR0Bxp5UlzEJjaAdLmWgIR0DBYN5BE8aGdX2UKGgGR0ByfS1rqMWHaAdLzGgIR0DBYONhiLEUdX2UKGgGR0Byr1Gtp22YaAdL3mgIR0DBYO75CWu6dX2UKGgGR0BxHzItDlYEaAdLnmgIR0DBYPUGorFwdX2UKGgGR0BxzmWzF+/haAdL0GgIR0DBYPbsWweOdX2UKGgGR0BymCOtGNJfaAdN9gFoCEdAwWD4y4Wk8HV9lChoBkdAce3jOLR8dGgHS8JoCEdAwWELceKba3V9lChoBkdAcktDjBEa2mgHS6xoCEdAwWERT+ee4HV9lChoBkdAdCI7GNrCWWgHS8VoCEdAwWEWBcRlH3V9lChoBkdAc1Vgw482aWgHS+NoCEdAwWEj0L+glHV9lChoBkdAcVTDs+mm+GgHS7hoCEdAwWEng/C66XV9lChoBkdAcXIJEYwZfmgHS7poCEdAwWEqwBYFJXV9lChoBkdAcDMxgRbr1WgHS6poCEdAwWEtaY/mknV9lChoBkdAcs+4YJmdy2gHS6VoCEdAwWFNWaMJhXV9lChoBkdAcnTqMWGh3GgHS9VoCEdAwWFX7SiM53V9lChoBkdAcjmQMx46fmgHS8ZoCEdAwWFY9K28ZnV9lChoBkdAc1poXbdrPGgHS71oCEdAwWF1mwJPZnV9lChoBkdAc0t3NcGC7WgHS91oCEdAwWGDTI/7i3V9lChoBkdAcuok+HJtBWgHTWwBaAhHQMFhjpgLJCB1fZQoaAZHQHPO7gOz6adoB0vQaAhHQMFhj1u76Hl1fZQoaAZHQHMRx1xKg7JoB0vYaAhHQMFhkXj+7191fZQoaAZHQG/hKKHfuTloB0u3aAhHQMFhkn80k4Z1fZQoaAZHQHRWHDziCJ5oB0vjaAhHQMFhm1d5Y5l1fZQoaAZHQEc+UpNKyv9oB0traAhHQMFho8UVSGd1fZQoaAZHQHCEGmpEQXhoB0uZaAhHQMFhouQZGax1fZQoaAZHQG+qI/A0sOJoB0utaAhHQMFhpgP3BYV1fZQoaAZHQHKGJOJtSAJoB0vGaAhHQMFhqCLdepp1fZQoaAZHQHEMlkQPI4loB0vLaAhHQMFhvJGOMl11fZQoaAZHQHM5+psGgSRoB0vdaAhHQMFhzRISUTt1fZQoaAZHQHEGlaSs8xNoB0u3aAhHQMFh4AezUqh1fZQoaAZHQHI83VXmvGJoB0vSaAhHQMFh90LMLWt1fZQoaAZHQHBt9yDIzWRoB0u4aAhHQMFh/mT1TR91fZQoaAZHQHHz0bo8p1BoB0uraAhHQMFiAQXAM2F1fZQoaAZHQHC6ThHbypdoB0ueaAhHQMFiBOEM9bJ1fZQoaAZHQHH1gIQe3hJoB0vAaAhHQMFiG9uHerN1fZQoaAZHQHCIEfozN2VoB01wAWgIR0DBYiH4M4LkdX2UKGgGR0BwvyzPa+N+aAdLtWgIR0DBYiinNxEOdX2UKGgGR0Byb9VPva11aAdL0GgIR0DBYisl9jPOdX2UKGgGR0B0W23I+4b0aAdL3GgIR0DBYjAxzq8ldX2UKGgGR0Bxr4ZuQ6p6aAdLv2gIR0DBYjKYqoZRdX2UKGgGR0ByL8lt0mtyaAdL0mgIR0DBYjSs2eg+dX2UKGgGR0BxjTT/hl19aAdLx2gIR0DBYjWYlY2bdX2UKGgGR0By8jW1+iJwaAdL5GgIR0DBYkt7dBSldX2UKGgGR0BwAk9Mbm2caAdLuGgIR0DBYlMxh2GJdX2UKGgGR0BzE/5hz/6waAdLzmgIR0DBYlKfBeoldX2UKGgGR0BxJfs/pt78aAdLt2gIR0DBYmLdrO7hdX2UKGgGR0BxD4EGJN0vaAdLq2gIR0DBYnHYvnKXdX2UKGgGR0BxVW/zreImaAdLyWgIR0DBYoJ/b0vodX2UKGgGR0Byarq0MPSVaAdLy2gIR0DBYorW7OE/dX2UKGgGR0ByeXSsr/bTaAdLzWgIR0DBYo/hOxjbdX2UKGgGR0Bww1eTmnwYaAdLlmgIR0DBYpdnuiN9dX2UKGgGR0By2O06YE4eaAdLwGgIR0DBYpvZ26kJdX2UKGgGR0Bxricy31BdaAdLqmgIR0DBYqCyfL9udX2UKGgGR0Bymg+s5n14aAdLwmgIR0DBYqKdrftQdX2UKGgGR0ByWE8QqZtvaAdLxmgIR0DBYqs274BWdX2UKGgGR0ByAyqXF98aaAdLvGgIR0DBYq5R4yGjdX2UKGgGR0BzJYH+qBEsaAdLy2gIR0DBYrq+8Gs4dX2UKGgGR0BygubPQfITaAdLxWgIR0DBYtWS6lLwdX2UKGgGR0By7S5SWJJoaAdLyGgIR0DBYthPhybQdX2UKGgGR0ByGI36yjYaaAdNCQFoCEdAwWLZ2mHgxnV9lChoBkdAcaJs4T9KmWgHS7RoCEdAwWLcGNaQm3V9lChoBkdAc5ctOmBOHmgHS99oCEdAwWLf+kxh2HV9lChoBkdAcrvmlZX+2mgHS9BoCEdAwWMMbI91U3V9lChoBkdAch16KtPpIWgHS8NoCEdAwWMLyp71I3V9lChoBkdAckfgE2YOUmgHS5doCEdAwWMOn0Cih3V9lChoBkdAbm2JHiFTN2gHS8NoCEdAwWMQ2sq8UXV9lChoBkdAcMvhbW3BpGgHS8VoCEdAwWMZ7Kq4pnV9lChoBkdAc/skwevIO2gHS8FoCEdAwWMgU34sVnV9lChoBkdAcsrcHnlny2gHS8poCEdAwWMhxJ/XoXV9lChoBkdAchAjiGWUr2gHS8doCEdAwWMltKqXGHV9lChoBkdAcq9+NLlFMWgHS95oCEdAwWM/Sk0rLHV9lChoBkdAcihBzV+ZxGgHS6JoCEdAwWNDR64Ue3V9lChoBkdAcny3Qla8pWgHS65oCEdAwWNHUipvP3V9lChoBkdAcFamVJL/TGgHS7VoCEdAwWNOvHLidnV9lChoBkdAcj85+pfhM2gHS7VoCEdAwWNSUSIxg3V9lChoBkdAcQ5WH1vl2mgHS8doCEdAwWNhY8uBc3V9lChoBkdAcyd60IC2dGgHTYoBaAhHQMFjdxx1gYx1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -94,6 +94,6 @@
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a720e380700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a720e380790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a720e380820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a720e3808b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a720e380940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a720e3809d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a720e380a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a720e380af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a720e380b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a720e380c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a720e380ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a720e380d30>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a720e512640>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 3014656,
25
+ "_total_timesteps": 3000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1703238443168373186,
30
+ "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOrDTr6tNmc/FiVmvlZSBL8WJpe+qiUdvAAAAAAAAAAAsxMoPc7Fuj/6VFQ+jTcCvsGhhz0gkLc9AAAAAAAAAAAzLzq9/FFFPiDvVr2tLJu+XHWXvddCLD0AAAAAAAAAAJq13zt2aiK82kTYPS+1VjwwKaW9Uf0zPQAAgD8AAIA/zQ54vCkUJ7oLlTQ8fjwDtUJJBDv2ggO0AAAAAAAAgD/tuTi+LREiPyZ6q7tZOuC+eD8Jvrra7D0AAAAAAAAAAGYXA72uVZS6JWZmOQ7iPLZRHYy3D6QztQAAAAAAAIA/msYvPhjriz8ixMA+q6WXvnK2sD4+XMI+AAAAAAAAAACNEUg+EmaPP11qJT5cAdm+h7UlP750jbwAAAAAAAAAAKanGz7WIJg/cgJYPtli274TSJo+EpAnvAAAAAAAAAAA5iwdvru29j6qngg+MK6rvoNqiL2d27o9AAAAAAAAAACAxmO+wcVmP4DSkb1O1dO+jl1SvsrrGT0AAAAAAAAAAIB9TL4HiDM/6llzvRed9b6RnG2+poTtPQAAAAAAAAAAM3taO8F3sj8XCZM9inJmvj8H1zowplg9AAAAAAAAAABmu628pFomu4YQJ7yi2ZY8ckoUPCbfgb0AAIA/AACAPzNZvbyr3Zc+Cw7YPJ5atL4Iwc47QjvxOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJ3b/82rGSMAWyUS+aMAXSUR0Cjl8FNUOurdX2UKGgGR0BwRlrqMWGiaAdLzmgIR0CjmAKpLmITdX2UKGgGR0ByQ6lN1yNoaAdL02gIR0CjmAyiM5wPdX2UKGgGR0BydEL+glF+aAdLx2gIR0CjmGfQ8fV7dX2UKGgGR0Bwv5y8zyjIaAdLzGgIR0CjmIR2B8QadX2UKGgGR0Bzr8k4WDYiaAdLy2gIR0CjmJGnO0LMdX2UKGgGR0BvA7hUBGQTaAdL2WgIR0CjmJAjIJZ4dX2UKGgGR0BxlrO8kD6naAdL0WgIR0CjmOBzV+ZxdX2UKGgGR0BwR640/GEPaAdLxmgIR0CjmPD1GsmwdX2UKGgGR0BxsNiI+GGmaAdL9GgIR0CjmQmeUY8/dX2UKGgGR0But1MCcPOIaAdLwmgIR0CjmRHnuAqedX2UKGgGR0Bwwmi48U22aAdL12gIR0CjmRPalDWtdX2UKGgGR0BypRiDujREaAdL2mgIR0CjmTRu89OidX2UKGgGR0BxNMtg8bJfaAdL0WgIR0CjmUXqzJIUdX2UKGgGR0By6F1mrbQDaAdL5GgIR0CjmaJvHcUNdX2UKGgGR0BulUrI5o4/aAdL3mgIR0CjmaiJ40MxdX2UKGgGR0By7P/0dzXCaAdL5mgIR0CjmitSydFwdX2UKGgGR0ByMxxZMcp9aAdL1mgIR0Cjmkfh/Aj6dX2UKGgGR0BtxgfyPMjeaAdL2mgIR0CjmknxJ/XodX2UKGgGR0BwjBAHE/B4aAdLz2gIR0CjmrToMa0hdX2UKGgGR0ByJ+R1X/5taAdL1WgIR0Cjmrmvnr6ddX2UKGgGR0ByNDQHAymAaAdNCgFoCEdAo5s9oakylHV9lChoBkdAbuBysCDEnGgHS81oCEdAo5tCOxSpBHV9lChoBkdAca65oGpuM2gHS+loCEdAo5tfIhhYvHV9lChoBkdAcCGaWX1J2GgHS9xoCEdAo5tmYrrgO3V9lChoBkdAcxelr/Khc2gHTQsBaAhHQKOba495hSd1fZQoaAZHQHM8wrYoRZloB0vsaAhHQKObed4FA3V1fZQoaAZHQHAVNTkyULVoB0vhaAhHQKObf3wCr951fZQoaAZHQG4vOU+s5n1oB0vZaAhHQKObjfm9xqB1fZQoaAZHQHLRDKDCgsdoB00MAWgIR0CjnDLMkhRqdX2UKGgGR0BxWnqNZNfxaAdL52gIR0CjnDMGHHmzdX2UKGgGR0ByfMJ0GNaRaAdNDwFoCEdAo5yqQiiZfHV9lChoBkdAcSbDF6zE8GgHS9loCEdAo5y1IbwSanV9lChoBkdAcRJad+Xqq2gHS9hoCEdAo5y0Bfa6BnV9lChoBkdAc7lX6ZYxL2gHS/NoCEdAo5zfta6jFnV9lChoBkdAcREeXiR4hWgHS9VoCEdAo50hW5painV9lChoBkdAc21xqO938mgHS9xoCEdAo51GbutwJnV9lChoBkdAcH0Kr7wazmgHS89oCEdAo530OI68x3V9lChoBkdAcCdh11W8y2gHS91oCEdAo539k4FRpHV9lChoBkdAcLM9x6v7nGgHS8NoCEdAo54BO+IuXnV9lChoBkdAcbwYYR/ViGgHS9VoCEdAo54v2TPjXHV9lChoBkdAcm1sI3R5T2gHS+5oCEdAo547SPU8WHV9lChoBkdAcRSYvWYnfGgHS9xoCEdAo55B0W/JvHV9lChoBkdAceoHpr1ui2gHS+hoCEdAo55MZJkGzXV9lChoBkdAcsJI8QqZt2gHS+ZoCEdAo55SdnTRY3V9lChoBkdAbd6N/e+EiGgHS9hoCEdAo58S5VfeDXV9lChoBkdAcVN5xR2r4mgHS/loCEdAo5+PnGKhtnV9lChoBkdAb6+1RceKbmgHS9doCEdAo5/Bqh11XHV9lChoBkdAcDvbJOnEVGgHS9FoCEdAo5/uDaoMrnV9lChoBkdAcVduGbkOqmgHS+poCEdAo6AC9VWCE3V9lChoBkdAcPIufmLcbmgHS8hoCEdAo6AXTmW+oXV9lChoBkdAcwPWZJCjUWgHS+VoCEdAo6C5QizLOnV9lChoBkdAcWIu63AmA2gHS8doCEdAo6D5akhzNnV9lChoBkdAcKKHdoFmnWgHS8doCEdAo6FVBv73wnV9lChoBkdAcT0gIyCWeGgHS+JoCEdAo6FnVZs9CHV9lChoBkdAbt6qQzUI9mgHS9FoCEdAo6FxbdJrcnV9lChoBkdAb8L8EV32VWgHS91oCEdAo6Gg3irDInV9lChoBkdAcf33Mpw0f2gHS+ZoCEdAo6G7Lr5ZbXV9lChoBkdAcXd54nndPGgHS/doCEdAo6HPt2LYPHV9lChoBkdAcScfBeokzGgHS/BoCEdAo6IR4Uvf0nV9lChoBkdAcNTSn+AEuGgHS7xoCEdAo6Lo4n4O+nV9lChoBkdAcXeIP9UCJWgHS+toCEdAo6LwHcDbJ3V9lChoBkdAcYbz7MxGlWgHS8RoCEdAo6MviR4hU3V9lChoBkdAcoOl5nlGPWgHS+NoCEdAo6M6pR4yGnV9lChoBkdAcJqU47zTW2gHS+doCEdAo6OKYG+sYHV9lChoBkdAcTlexwAEMmgHS+ZoCEdAo6QxfD1oQHV9lChoBkdAcjHANXo1UGgHS95oCEdAo6RNNlAeJnV9lChoBkdAbxxRVp9JBmgHS8VoCEdAo6R98G9pRHV9lChoBkdAcuysCkoF3mgHS9ZoCEdAo6SU4LkS3HV9lChoBkdAdCdYVIqb0GgHS95oCEdAo6Somb9ZR3V9lChoBkdAbzN93r2QGWgHS8hoCEdAo6Ti3w1BMXV9lChoBkdAcoSCSidrf2gHS9hoCEdAo6Tngk1MunV9lChoBkdAbmTRVIZqEmgHS+VoCEdAo6UDmOlwcnV9lChoBkdAcf6cI7eVLWgHTQMBaAhHQKOlGrELpiZ1fZQoaAZHQG9IWattALRoB0voaAhHQKOmD5zo2XN1fZQoaAZHQHKB+fRNRFZoB0vXaAhHQKOmMOp84Px1fZQoaAZHQHBSHu/k/8loB0vyaAhHQKOmj6dDpkh1fZQoaAZHQHJ1Rje9Ba9oB0vzaAhHQKOnCGTLW7R1fZQoaAZHQHAUesLfDUFoB0vSaAhHQKOnQu7pV0d1fZQoaAZHQG/WYwRGtp5oB0viaAhHQKOnoroW56N1fZQoaAZHQHN7aDCgsbxoB0vdaAhHQKOnxBjWkJt1fZQoaAZHQHJtpEMLF4toB0vDaAhHQKOn1b1yvLZ1fZQoaAZHQHJpC3kPtlZoB0vWaAhHQKOn2hkAggZ1fZQoaAZHQHE2YDTz/ZNoB0vfaAhHQKOn5z3AVO91fZQoaAZHQHGk9As052hoB0vNaAhHQKOoGU47zTZ1fZQoaAZHQHD73Ehq0t1oB0vtaAhHQKOos7/XGwR1fZQoaAZHQG/APX05EMNoB00AAWgIR0CjqL93bEgodX2UKGgGR0BxE9g+hXbNaAdLzGgIR0CjqUHQ6ZH/dX2UKGgGR0Bx5gelsP8RaAdL32gIR0Cjqa7Qb+98dX2UKGgGR0BwBBpVS4vwaAdL6mgIR0Cjqj2qDK5kdX2UKGgGR0ByI3PppvgnaAdLzmgIR0Cjqkl4cFQmdX2UKGgGR0BwN87ihnJ1aAdL7WgIR0CjqwiUPhAGdX2UKGgGR0ByBCkUKzAvaAdL2GgIR0CjqxIH1OCYdX2UKGgGR0Byt8KfFrEcaAdL3GgIR0Cjq0KZDzAfdX2UKGgGR0ByX/3225QQaAdL2mgIR0Cjq1z1kDp1dX2UKGgGR0BvHUAT7EYPaAdL4GgIR0Cjq2QyIpH7dX2UKGgGR0BvQJZbILgGaAdLz2gIR0Cjq2gzxgAqdX2UKGgGR0Bxgt87ZFodaAdL72gIR0Cjq596cAindX2UKGgGR0Bmt6ySmqHXaAdN6ANoCEdAo6vI1BMSK3V9lChoBkdAcHkswL3K0WgHS9FoCEdAo6v1i+cpb3VlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 368,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
94
  "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
  }
99
  }
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:94d79ed78b8e20179f5ab45bfd8ab9797d0f4045608b12999dc5f851c78d5e54
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d15a2c7a4f059b88f50aa4a7623a37b4f4a6fb0e4578bc00b655987f037a3c18
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5e18ec7f98f16246e6bf30fbac83c6cf1458090bba25f519f8fcf51cc460c4bf
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:706abf0c6060279d4f2e4d25b866a411bfbd9adabbff1a8fab30972d23f88e8b
3
  size 43762
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
- - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
- - PyTorch: 2.1.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
  - GPU Enabled: True
6
  - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -143.4591946463076, "std_reward": 94.24589805756479, "n_evaluation_episodes": 10, "eval_datetime": "2023-12-22T09:34:28.597012"}
 
1
+ {"mean_reward": 273.85990149097853, "std_reward": 15.19286703767183, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-22T10:33:50.051219"}