--- base_model: meta-llama/Meta-Llama-3.1-405B library_name: peft tags: - axolotl - generated_from_trainer model-index: - name: Llama-3.1-SyntheticPython-405B-Base-LoRA results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-405B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: ericflo/SyntheticPython-Pretrain-v1 type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./outputs/lora-out hub_model_id: ericflo/Llama-3.1-SyntheticPython-405B-Base-LoRA hub_strategy: end sequence_len: 8192 sample_packing: false pad_to_sequence_len: false wandb_project: syntheticpython wandb_entity: wandb_watch: wandb_name: llama3.1-405b wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false adapter: qlora lora_r: 128 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true ```

# Llama-3.1-SyntheticPython-405B-Base-LoRA This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - total_train_batch_size: 7 - total_eval_batch_size: 7 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1